Open Burn/Open Detonation Range (Dry Season) Groundwater Detection Monitoring Report

(1st Semiannual 2024)

Department of the Air Force Andersen Air Force Base, Guam

Prepared by Sundance – EA Associates II in compliance with the Resource Conservation and Recovery Act Permit (Permit No. GUS002) for Andersen Air Force Base Hazardous Waste Management Facility

Executive Summary	1
1.0 INTRODUCTION	2
1.1 SITE LOCATION	2
1.2 SAMPLING LOCATIONS	3
1.3 SITE GROUNDWATER MONITORING SYSTEM	
2.0 GROUNDWATER SAMPLING	3
2.1 WATER LEVEL DETERMINATION	4
2.2 EQUIPMENT DECONTAMINATION PROCEDURES	4
2.2.1 Procedures for Decontaminating the Low Flow Double Valve Pump and Sample/Discharge Line	4
2.3 WELL PURGING	
2.4 SAMPLE EXTRACTION	5
2.4.1 Well IRP-52 Groundwater Sampling	5
2.4.2 Groundwater Seeps Sampling	
2.5 FIELD PARAMETERS MEASUREMENT	
2.5.1 Field Chloride Test	6
2.5.2 Calibration	6
2.6 FIELD QUALITY ASSURANCE/QUALITY CONTROL (QA/QC) SAMPLES	6
2.6.1 Field Blanks	
2.6.2 Field Duplicates	6
2.7 SAMPLE CONTAINERS, PRESERVATION, AND HOLDING TIMES	7
2.8 SAMPLE DOCUMENTATION, HANDLING, AND PACKAGING	7
2.8.1 Sample Labeling	7
2.8.2 Chain-Of-Custody Form	7
2.8.3 Sample Preservation, Packing and Delivery	7
3.0 2024 1 st SEMIANNUAL OB/OD RANGE (Dry Season) GROUNDWATER	
DETECTION MONITORING	
3.1 Groundwater Flow and Direction	
3.2 GROUNDWATER QUALITY	
3.2.1 Outlier Determination	
3.2.2 Statistical Analysis Plan	
3.2.3 Results of the Statistical Analysis	
3.2.4 Comparison to Risk-Based Concentration Limits	
3.2.5 Quality Assurance/Quality Control Results	.10
4.0 CONCLUSIONS	.10

TABLE OF CONTENTS

TABLES

Table 1	Summary of Sample Locations
Table 2	Detection Monitoring Parameter List
Table 3	Groundwater Field Parameters Results Summary
Table 4	Groundwater Quality Results Summary

FIGURES

- Figure 1 Location Map of the OB/OD Range, Andersen AFB
- Figure 2 Map of Upgradient Well, IRP-52
- Figure 3 Map of Four Downgradient Freshwater Seeps (SP-1, SP-2, SP-4, SP-5)

APPENDICES

- Appendix A Location Maps
- Appendix B 2024 1st Semiannual (Dry Season) Detection Monitoring OB/OD Groundwater Sampling Photos
- Appendix C Decontamination and Calibration Log Sheets, Semiannual Groundwater Sampling Forms
- Appendix D Field Measurements
- Appendix E Data Summary
- Appendix F Analytical Laboratory Results
- Appendix G Statistical Analysis

Executive Summary

In accordance with Section IV.A.1.c of the Resource Conservation and Recovery Act (RCRA) Permit (Permit No. GUS002), a statistical evaluation and comparison of groundwater data to background concentrations of metals and explosives in up-gradient samples and comparison of groundwater concentrations to risk-based concentration limits (maximum contaminant levels) were performed to determine whether or not a release has occurred from the Open Burn/Open Detonation (OB/OD) Range.

The analytical results received from the Eurofins Calscience, LLC indicates that the permitstipulated chemicals of concern (cyclotrimethylenetrinitramine [RDX], (bis(2-ethylhexyl) phthalate [DEHP], mercury, and lead) were not detected in the down-gradient freshwater seeps at statistically significant levels above established background concentration and no-risk based concentration limits were exceeded. Therefore, Andersen Air Force Base (Andersen AFB) will remain in detection monitoring only at the Explosive Ordinance Disposal (EOD) Range.

1.0 INTRODUCTION

Andersen Air Force Base (Andersen AFB) operates a Hazardous Waste Management Facility under Permit No. GUS002, issued by the Guam Environmental Protection Agency (Guam EPA) on 05 September 2018. The permit authorizes Andersen AFB to operate a hazardous waste treatment facility within the boundaries of Andersen AFB at the extreme reach of Tarague Beach ending just before Tagua Point, Yigo, Guam.

The hazardous waste management unit authorized by the permit is an Open Burn/Open Detonation (OB/OD) Range is used to treat reactive hazardous wastes (D003) and/or hazardous wastes determined to be toxic through Toxicity Characteristic Leaching Procedure (TCLP) analysis under the regulations of Guam EPA and the United States Environmental Protection Agency (USEPA) Region IX. The primary function of the OB/OD Range is the disposal of waste explosives and waste ammunitions. The EOD Range at Andersen AFB is required to comply with Guam EPA rules and regulations under the Guam Solid Waste Management and Litter Control Act (10 Guam Code) and the federal Solid Waste Disposal Act as amended by the Resource Conservation and Recovery Act (RCRA) of 1976, as well as hazardous waste regulations promulgated under the Guam EPA and regulations enacted by the USEPA referenced in Title 40 of the Code of Federal Regulations.

The mission of OB/OD Range is to render unserviceable ordnance and other pyrotechnic devices harmless by either suppressed detonation or open burning. In addition, the EOD Range has been used for EOD training and emergency purposes.

This report summarizes the sampling events for the 2024 1st Semiannual OB/OD Range (Dry Season) groundwater detection monitoring at Andersen Air Force Base. Samples were collected by Sundance – EA Associates II from IRP-52 and associated freshwater seeps locations and submitted to Eurofins Calscience, LLC laboratory for mercury, lead, di(2-ethylhexyl) phthalate [DEHP], and RDX (cyclotrimethylenetrinitramine) analysis for this reporting period.

1.1 SITE LOCATION

The EOD Range is defined as the open beach area bounded by the Pacific Ocean to the north and the jungle and/or limestone to the east, south and west and is used for open burning and open detonation of waste ordnance materials. The unit is located at the extreme eastern reach of Tarague Beach, ending just before Tagua Point (See Figure 1, Appendix A). The grid coordinates for the portion of the range used for open detonation are 13 degrees 35.58 minutes north, 144 degrees 56.48 minutes east.

The detonation unit is located at the extreme eastern edge of Tarague Beach directly along the face of the cliff. Detonation of the munitions at the cliff face directs the destructive force of the detonation away from the occupied areas. Open detonation operations consist of several steps, including properly placing the waste munitions, an explosive charge to detonate the waste munitions, and an igniter to initiate the detonator. Detonations are initiated from the personnel bunker.

The inactive open burning pit is located approximately 80 feet from the jungle and 180 feet from the Pacific Ocean, approximately midway east west in the EOD Range.

1.2 SAMPLING LOCATIONS

Samples were collected at the five (5) sampling points specified in the approved 2015 *OB/OD Range Groundwater Monitoring Plan*: well IRP-52 and the four freshwater seeps (SP-1, SP-2, SP-4, and SP-5). Well IRP-52 is an upgradient well located along 32nd Street at Andersen AFB (See Figure 2, Appendix A). SP-1, SP-2, SP-4, and SP-5 are four (4) downgradient freshwater seeps located at the Tarague embayment (See Figure 3, Appendix A). Table 1 below provides the coordinates for the upgradient well and the four downgradient freshwater seeps. All seeps were marked for faster identification.

Table 1: Summary of Sample Locations						
Well/Seep	Well/Seep Coordinates					
IRP-52	13° 35' 39" N	144° 55' 40" E				
SP-1	13° 35' 59.810" N	144° 55' 39.760" E				
SP-2	13° 36' 0.001" N	144° 55' 37.362" E				
SP-4	13° 36' 1.043" N	144° 55' 34.523" E				
SP-5	13° 36' 1.195" N	144° 55' 31.736" E				

1.3 SITE GROUNDWATER MONITORING SYSTEM

Groundwater monitoring at the OB/OD Range was conducted in accordance with Section IV of the RCRA Permit for Andersen AFB Hazardous Waste Management Facility.

Groundwater background and detection monitoring were conducted in accordance with the 2015 *OB/OD Range Groundwater Monitoring Plan*. Background groundwater samplings for IRP-52 and the four freshwater seeps were performed quarterly for one year, from June 2014 to March 2015. The quarterly samples taken during the background data collection phase were used to establish background water quality.

Table 2: Detection Monitoring Parameter List						
Frequency	Locations	Parameters				
Semiannual	Well IRP-52, SP-1, SP-2, SP-4, SP-5	DEHP or di(2-ethylhexyl) phthalate RDX or cyclotrimethylenetrinitramine Mercury Lead				

Field parameters including chloride, pH, specific conductance, and temperature are also monitored semiannually during detection monitoring, however no statistical analyses are required. Field results are discussed further in Section 2.5 of this report.

2.0 GROUNDWATER SAMPLING

The 2024 1st Semiannual OB/OD Range (Dry Season) groundwater detection monitoring sampling events at well IRP-52 and the four freshwater seeps were conducted on June 25, 2024.

Photos taken during the 2024 1st Semiannual OB/OD Range (Dry Season) groundwater detection monitoring sampling events are provided in Appendix B.

The procedures for obtaining groundwater samples, parameter analyses, and sample preservation and handling are discussed in Sections 2.1 through 2.8

2.1 WATER LEVEL DETERMINATION

Prior to collecting samples from well IRP-52, the depth to water was measured using an electronic water level indicator. The measurement was taken to the nearest 0.01 foot from the top of the well casing and recorded into the Semiannual Groundwater Sampling Form, Appendix C. The water level indicator equipment was decontaminated prior to use with non-phosphate detergent (Liquinox), rinsed with clean water and then distilled water provided by the Water and Environmental Research Institute (WERI) Laboratory. Decontamination of equipment is further discussed in Section 2.2 below.

2.2 EQUIPMENT DECONTAMINATION PROCEDURES

All sampling and measuring equipment were thoroughly decontaminated with non-phosphate detergent (Liquinox), rinsed with clean water and then distilled water prior to and after each sampling event in accordance with the 2015 *OB/OD Range Groundwater Monitoring Plan*. Decontaminated equipment was not allowed to come into contact with the ground or other contaminated surfaces prior to sample collection.

2.2.1 Procedures for Decontaminating the Low Flow Double Valve Pump and Sample/Discharge Line

The low flow double valve pump was decontaminated before and after it was used to purge well IRP-52. The double valve pump was cleaned with Liquinox and rinsed thoroughly with clean water and then distilled water. Decontamination Log Sheet is provided in Appendix C.

The sample/discharge line was decontaminated by submerging the double valve pump in clean water contained in a clean 50-gallon drum. The electronic pump control was activated to start the pump and re-circulate the water until the sample/discharge line was thoroughly cleaned and flushed.

2.3 WELL PURGING

Prior to collecting samples from well IRP-52, the groundwater well was purged using a portable low flow double valve pump to ensure that a representative sample was obtained. The double valve pump was lowered slowly and gently down the well to avoid the disturbance of any sediment that may be present in the well, creating or increasing sample turbidity. The groundwater well was purged until field measurements were stabilized with three (3) consecutive readings: temperature is within $\pm 1^{\circ}$ C, pH is within ± 0.1 unit, and specific conductivity is within $\pm 5\%$.

Well purging and field measurements were recorded into the Semiannual Groundwater Sampling Form. Field sampling forms are found in Appendix C of this report.

2.4 SAMPLE EXTRACTION

2.4.1 Well IRP-52 Groundwater Sampling

The equipment and techniques used to extract groundwater samples from well IRP-52 were selected based on the depth of the well and the parameters to be analyzed. To ensure the groundwater sample is representative of actual aquifer conditions, Sundance-EA Associates II maintains the following sampling protocols:

- sampling equipment used were operated and calibrated according to the manufacturer's recommended specifications;
- decontaminated equipment was not allowed to come into contact with the ground or other contaminated surface prior to sampling;
- used a low flow double valve pump to minimize the disturbance of any sediment that may be present in the well;
- all field measurements have stabilized with three (3) consecutive readings: change in temperature is within ± 1°C, change in pH is within ± 0.1 unit, and change in specific conductivity is within ± 5%;
- double valve pump did not make any contact with the bottom of the well; and
- all samples were allocated into the appropriate sample containers.

2.4.2 Groundwater Seeps Sampling

Field parameter measurements were conducted prior to collecting samples at the four (4) groundwater seeps located at the EOD Range. These parameters include: chloride, specific conductance, pH and temperature. To ensure the groundwater seep samples are representative of actual aquifer conditions, Sundance-EA Associates II maintains the following sampling protocols:

- all equipment used were operated and calibrated according to the manufacturers recommended specifications;
- samples were collected thirty (30) to sixty (60) minutes prior to the lowest tide;
- chloride readings were within 500 mg/L to 5000 mg/L. Field chloride test is further discussed in Section 2.5.1; and
- semi-volatile samples were collected directly into containers when the groundwater seep source was accessible by submerging the sample containers. When semi-volatile sample containers could not be submerged, a glass beaker was used to collect samples.

2.5 FIELD PARAMETERS MEASUREMENT

Some of the parameters evaluated are physically or chemically unstable and cannot be reliably measured in the laboratory as their characteristics change over a very short time scale. Field measurement is necessary to preserve sample integrity and ensure data accuracy.

Groundwater samples from well IRP-52 and the four freshwater seeps were field tested for pH, temperature, and specific conductance using a multi-probe instrument. Field measurements taken for well IRP-52 and groundwater seeps were recorded in the Groundwater Sampling Form and Seeps Sampling Form respectively, and are found in Appendix C.

Data summaries of the field measurement and analytical laboratory test results for the 2024 1st Semiannual OB/OD Range (Dry Season) groundwater detection monitoring sampling events are provided in Table 3, Appendix D, and in Table 4, Appendix E, respectively.

2.5.1 Field Chloride Test

There is a significant tidal mixing due to the proximity of the four freshwater seeps to the Pacific Ocean. Chloride concentration at the seeps will range between 500 and 5000 mg/L. A chloride reading within 500 to 5000 mg/L constitutes a freshwater seep sample.

Sundance – EA Associates II representatives conducted the field chloride test using the HACH® Chloride Quantab® test strips prior to collecting samples. A summary result of the field chloride measurements for the four freshwater seeps is provided in Table 3, Appendix D.

2.5.2 Calibration

Sundance – EA Associates II representatives ensured that all meters and equipment used for field parameter measurements were calibrated before use following manufacturers' recommendations. The calibration log sheet for the Horiba U52 Multi Probe System and HACH® Quantab® titrators is included in Appendix C.

2.6 FIELD QUALITY ASSURANCE/QUALITY CONTROL (QA/QC) SAMPLES

The results of field quality control (QC) samples are used to assess sample collection procedures and environmental conditions during sample collection. The field QC samples include field blanks and field duplicates.

2.6.1 Field Blanks

For quality assurance and quality control (QA/QC) purposes, field blanks were prepared in the field by pouring de-ionized water into the sample containers in the field and labeled Field Blanks. The field blank containers were opened and remained open throughout the process of filling sample containers and were closed thereafter. Two sets of field blanks were collected and analyzed: one set at the groundwater seeps and another set at well IRP-52. The field blanks were handled in the same manner as the rest of the samples. The field blank results were used to assess and identify any contamination from field conditions or procedures during sample collection and handling.

2.6.2 Field Duplicates

Field duplicate sample results are used to assess the precision of the sample collection process. A field duplicate sample is a second sample collected at the same location as one of the original samples. Procedures used for collecting the duplicate samples were identical to the sampling protocol detailed in Section 2.4.2, collected in immediate succession, and were treated in the identical manner during storage, transport, and analysis. The collected field duplicate samples were submitted blind to the laboratory and analyzed for the same parameters as the original samples. Result for the field duplicate sample collected at seep SP-4 is included in the data summary provided in Table 4, Appendix E.

2.7 SAMPLE CONTAINERS, PRESERVATION, AND HOLDING TIMES

Before each OB/OD groundwater sampling event, the appropriate sample containers were provided by the Eurofins Calscience, LLC laboratory. Sample containers were labeled to indicate use of preservatives, as appropriate. Samples were shipped to the offsite laboratory with sufficient time remaining to perform the analytical testing prior to the expiration of the specified holding time.

2.8 SAMPLE DOCUMENTATION, HANDLING, AND PACKAGING

2.8.1 Sample Labeling

All sample containers were labeled at the sampling location and at the time of collection to prevent misidentification of samples. The labels contained the following information:

- Sample Date and Time;
- Sample Location;
- Preservative;
- Analysis Required;
- Sampler's Initial.

2.8.2 Chain-Of-Custody Form

Collected samples were accompanied by a chain-of-custody (COC) record that included the name and signature of sampler(s), sampling point identification, collection date and time, sample matrix, number of containers, preservative, and analytical information.

2.8.3 Sample Preservation, Packing and Delivery

In accordance with the 2015 *OB/OD Range Groundwater Monitoring Plan*, collected samples were placed in a cooler for preservation and maintained at 4 degrees Celsius (°C) \pm 2 °C using ice. Sample custody was retained by Sundance – EA Associates II from the time of collection until the sample coolers were sealed under secure chain of custody for expedited shipment to the offsite laboratory. Sample preservation, packing, and delivery were all in accordance with the 2015 *OB/OD Range Groundwater Monitoring Plan*.

3.0 2024 1st SEMIANNUAL OB/OD RANGE (Dry Season) GROUNDWATER DETECTION MONITORING

The sampling results described in this section are for the 2024 1st Semiannual OB/OD Range (Dry Season) groundwater detection monitoring sampling event conducted at well IRP-52 and the four freshwater seeps on June 25, 2024. Results for the 2024 1st Semiannual sampling event are summarized in the following sections, tables, and appendices.

3.1 Groundwater Flow and Direction

In accordance with the requirements of Section IV G (3) of the Resource, Conservation, and Recovery ACT (RCRA) Permit for Andersen Air Force Base Hazardous Waste Management Facility (Permit No. GUS002), groundwater flow rate and direction in the uppermost aquifer shall be determined at least annually. However, as discussed in Section 2.2 of the approved 2015 *OB/OD Range Groundwater Monitoring Plan,* groundwater flow rate and direction have been established for the uppermost aquifer in a previous Dye Trace Study (DTS) conducted at the landfill complex.

The groundwater flow in the Northern Guam Lens aquifer moves from the limestone/volcanic contacts toward the sea. The DTS conducted in 2006 at the OB/OD Range supports that direction, as dye concentrations demonstrated groundwater movement from the OB/OD Range toward the seeps located in the beach area (See Figure 3, Appendix A). The site-specific groundwater flow at the OB/OD Range is presumed to be consistent with the 2006 evaluation.

3.2 GROUNDWATER QUALITY

The analytical laboratory results for the 2024 1st Semiannual OB/OD Range (Dry Season) groundwater detection monitoring sampling events are presented in Appendix F. The statistical analysis program used was DUMPStat Version 3.1. The DUMPStat program was used to perform Intra-well Control Charts Analysis and Inter-well Comparisons. The DUMPStat program was used to identify increasing trends and determine if statistically significant increases have occurred. The results of the statistical analyses are provided in Appendix G.

3.2.1 Outlier Determination

After merging the 2024 1st Semiannual OB/OD Range (Dry Season) groundwater detection monitoring quality data with the established background groundwater data, along with the data sets collected from semiannual groundwater detection monitoring events from 2015 – 2023, the data was automatically screened for the presence of outliers by choosing the Intra-Well Control Charts and the Inter-Well Comparisons. Statistical outliers (if any) are presented graphically on the Intra-Well Control Charts and Inter- Well Comparisons in Appendix G.

3.2.2 Statistical Analysis Plan:

In accordance with the 2015 *OB/OD Range Groundwater Monitoring Plan,* the current approved groundwater monitoring program entails:

• The frequency of groundwater sampling during the detection monitoring will be semiannual. The sampling events will be conducted during the dry season (December through June) and wet season (July through November). During the detection monitoring, one set of samples were collected at well IRP-52 and the four freshwater seeps every semiannual sampling event. The parameters sampled during detection monitoring are provided in Table 2.

- A summary of field parameter results is presented in Table 3, Appendix D.
- Following each sampling event, an Intra-Well and Inter-Well analysis will be performed for the parameters presented in Table 2. A semiannual groundwater monitoring report will be submitted to Guam Environmental Protection Agency (Guam EPA) within sixty (60) days of receipt of the laboratory analytical results from each semiannual sampling event.
- In the event the concentration levels of contaminants from a sampled seep and/or well IRP-52 during detection monitoring are above the risk-based concentration limit(s) or a statistically significant increase above background values, a verification sample will be collected immediately at the seeps and/or well IRP-52 where the exceedance occurred. Analytical results will be analyzed for the contaminants that exceeded the risked-based concentration limit(s).
- If there is an exceedance of a risk-based concentration limits and/or a statistically significant increase above the background values for the parameters listed in Table 2, Andersen AFB may demonstrate that a source other than a regulated unit caused the increase or that the increase resulted from error in sampling, analysis, or evaluation. In such cases:
 - Notify Guam EPA Administrator in writing within seven (7) days of determination made that Andersen AFB intends to make a demonstration.
 - Within ninety (90) days of the notice, Andersen AFB will submit a report to the Administrator, which demonstrates that a source other than a regulated unit caused the increase, or that the increase resulted from error in sampling, analysis, or evaluation.
 - Within ninety (90) days of the notice, Andersen AFB will submit an application for Permit Modification to make any appropriate changes to the site-monitoring program at the facility.
 - Andersen AFB will continue to monitor in accordance with the 2015 *OB/OD* Range Groundwater Monitoring Plan.

3.2.3 Results of the Statistical Analysis:

The results of the statistical calculations performed for the parameters listed in Table 2 are presented in Appendix G. Based on statistical analysis calculations performed with the DUMPStat program utilizing Intra-Well and Inter-Well methodology, no statistically significant increases above the background values were observed in the 2024 1st Semiannual OB/OD Range (Dry Season) groundwater detection monitoring.

3.2.4 Groundwater Result Summary

Table 4 in Appendix E presents a summary of the groundwater quality for the parameters listed in Table 2 at all sampling points. No risk-based concentration limit was exceeded during the 2024 1st Semiannual OB/OD Range (Dry Season) groundwater detection monitoring sample event.

3.2.5 Quality Assurance/Quality Control Results

Analytical results for the field blanks and groundwater seep duplicate sample (SP-4) showed no variability for the 2024 1st Semiannual OB/OD Range (Dry Season) groundwater detection monitoring sampling event, indicating consistent sampling and analytical procedures.

4.0 CONCLUSIONS

Based on the results of the 2024 1st Semiannual OB/OD Range (Dry Season) groundwater detection monitoring sampling and analytical testing, Andersen AFB reached the following conclusions:

Analytical Results:

- No risk-based concentration limit was exceeded during the 2024 1st Semiannual OB/OD Range (Dry Season) groundwater detection monitoring sampling event. Laboratory analytical results and data summary are provided in Appendix F and Appendix E, respectively.
- Analytical results for all field blank samples indicate no contamination as a result of field procedures and duplicate sample indicate consistency of sampling method.

Statistical Analysis:

The results of the statistical calculations performed for the parameters listed in Table 2 are presented in Appendix G. Based on statistical calculations performed with the DUMPStat statistical computer program using Intra-Well Control Charts and Inter-Well comparisons, no statistically significant increases were observed in samples collected during this reporting period.

APPENDIX A

Location Maps

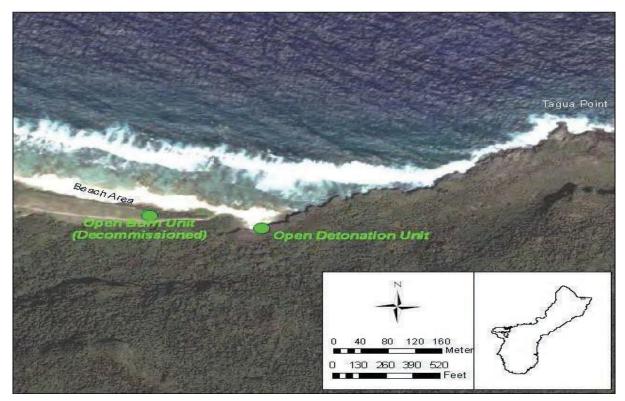


Figure 1: Location Map of the OB/OD Range, Andersen AFB

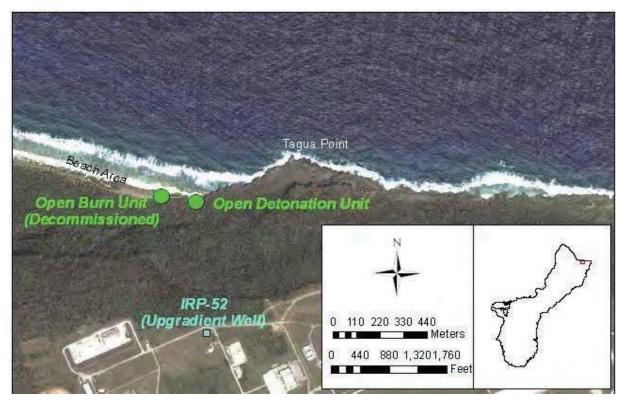


Figure 2: Map of Upgradient Well, IRP-52

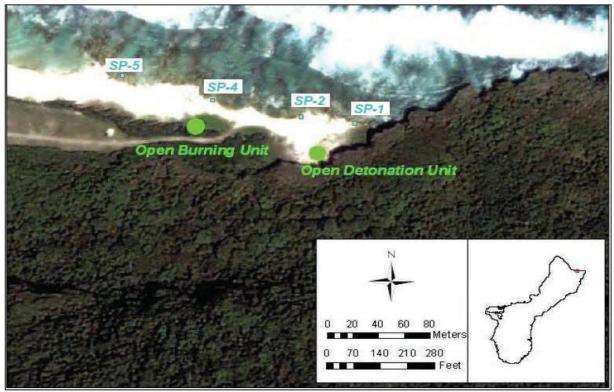


Figure 3: Map of Four Downgradient Freshwater Seeps (SP-1, SP-2, SP-4, SP-5)

APPENDIX B

2024 1st Semiannual (Dry Season) Detection Monitoring OB/OD Groundwater Sampling Photos

2024 1st Semiannual (Dry Season) Detection Monitoring OB/OD Ground Water Sampling Photos

June 25, 2024

Photo 1: Well IRP-52 Sample reel tube & pump set-up

Photo 2: Freshwater Seep Blank Sample

2024 1st Semiannual (Dry Season) Detection Monitoring OB/OD Ground Water Sampling Photos

Photo 3: Freshwater seep sampling at SP-2

Photo 5: Freshwater seep sampling at SP-4

APPENDIX C

Decontamination and Calibration Log Sheets, Semiannual Groundwater Sampling Forms

Anderson AFB Open Burn Open Detonation Decontamination Log Sheet

Date: 6/19/2024	Site Location: Well IRP-52
Recorded By: Heath Indalecio	Checked By/Date: HI / JSN

Decontamination Checklist:

Equipment	Purpose of Use	Liquinox [®] /Water Rinse	Potable Water Rinse	Other Water Rinse
Water Level Indicator Probe	Sampling	Yes	Yes	Yes
Sample Line	Sampling	Yes	Yes	Yes
Double Valve Pump	Sampling	Yes	Yes	Yes
Tag Line	Sampling	Yes	Yes	Yes

Decontamination Procedure Checklist	Yes	No
Place washing tubs on plastic sheeting?	\checkmark	
Scrub sampling equipment in Liquinox [®] /water until all visible dirt/grim, grease, oil, etc. have been removed?	✓	
Rinsed sampling equipment with a final rinse using the designed water listed in the table above?	\checkmark	
Placed decontaminated equipment of plastic sheeting for drying and transport?	\checkmark	
Placed decontaminated solutions in sealed container?	\checkmark	

Additional Note and Observation:

All sampling and measuring equipment were thoroughly decontaminated with non-phosphate detergent (Liquinox), rinsed thoroughly with water and then distilled water prior to and after each sampling event in accordance with the *OB/OD Range Groundwater Monitoring Plan*.

Andersen AFB Open Burn Open Detonation Equipment Calibration Log Sheet

Equipment Type	Date	Parameter (Unit)	Standard Lot No (QA/QC)	Standard Expiry Date (QA/QC)	Standard True Value (QA/QC)	Initial	
		Barometer (mmHg) http://w1.weather.gov/obhistory/PGUA.html					
Horiba U52	6/25/2024	Specific Conductance/ Conductivity	43110336	12/7/2025	1.0	RT	
Model	0/23/2024	(mS/cm)	43080506	9/11/2025	10.0	RT	
	6/25/2024	pH Buffer 4	8307141	7/27/2025	4.01	RT	
Horiba U52 Model		pH Buffer 7	A4032	Feb-26	7.00	RT	
		pH Buffer 10				RT	
Quantab [®] Test Strips	6/25/2024	Chloride (mg/L)	A3204A	Jun-25	1000	RT	
Qualitab Test Strips	0/20/2024	Chioride (mg/L)					
NOTE(S):							
QC Conductivity QC pH Temperature: 24.6 °C Actual Reading: 7.00 Actual Reading: 4.48 mS/cm True Value: 7.00 True Value: 4.45 mS/cm Range: 7.00 ± 0.02 Lot No: 8307141 Lot No: A2298 EXP: 7/27/2025 EXP: 10/2024							
Standards Accuracy 1. Conductivity Low Standard (1,000 μSiemens): ± 0.50% (995-1005μS or 0.995-1.005mS) at 25°C 2. Conductivity High Standard (10,000 μSiemens): ± 0.25% (9975-10025μS or 9.975-10.025mS) 3. Chloride High Standard Solution (1,000 mg/L): ± 0.5% (950-1050 mg/L) 4. pH Buffers: ± 0.05 pH units 5. Quantab® Test Strips: Use chart printed on the bottle to determine the chloride concentration.							

Location	(Seen ID): SP-1	
Location			

Time on Site: <u>1230</u>

Time Departed Site: <u>1345</u> Low Tide Time: <u>1611</u> Date: 06/25/2024 Weather Condition: <u>Sunny</u> Sample Collection Method: <u>Grab</u>

Personnel: <u>RT / HI / JSN</u>

	Field Analyses							
Sample Time	Chloride (mg/L)	рН	Temperature (°C)	Specific Conductance (µS/cm)	Sample Observation (Color, Odor, Etc.)			
1334	571	7.73	28.67	3550	Clear, no odor, low flow			

Analysis	Bottle Size	Preservative	Quantity	Method Number	Holding Time
Lead	1 500 mL HDPE		1	6010B	180 days
Mercury	I SOUTHLEDPE	OmLHDPE HNO₃ 1 -		7470A	28 days
RDX	1 Liter Archen Clear	Nega	2	8330	7 days to extraction; analyze w/in 40 days after extraction
DEHP	1 Liter Amber Glass	None	3	8270C	7 days to extraction; analyze w/in 40 days after extraction
Bottle Count			4		

Note:

Freshwater Conductivity - up to 2,000 uS/cm

Time on Site: <u>1230</u>

Time Departed Site: <u>1345</u> Low Tide Time: <u>1611</u> Date: 06/25/2024 Weather Condition: <u>Sunny</u> Sample Collection Method: <u>Grab</u>

Personnel: <u>RT / HI / JSN</u>

	Field Analyses						
Sample Time	Chloride (mg/L)	рН	Temperature (°C)	SpecificConductance (µS/cm)	Sample Observation (Color, Odor, Etc.)		
1322	600	7.53	26.82	2170	Clear, no odor, decent flow		

Analysis	Bottle Size	Preservative	Quantity	Method Number	Holding Time
Lead	1 500 mL HDPE		1	6010B	180 days
Mercury	I SOUTHLEDPE	HNO₃	T	7470A	28 days
RDX	1 Liter Archen Clear	Nega	2	8330	7 days to extraction; analyze w/in 40 days after extraction
DEHP	1 Liter Amber Glass	None	3	8270C	7 days to extraction; analyze w/in 40 days after extraction
Bottle Count			4		

Note:

Freshwater Conductivity - up to 2,000 uS/cm

Location (Seep ID): <u>SP-4</u>

Time on Site: 1230

Time Departed Site: <u>1345</u> Low Tide Time: <u>1611</u> Date: 06/25/2024 Weather Condition: Sunny Sample Collection Method: Grab

Personnel: <u>RT / HI / JSN</u>

	Field Analyses						
Sample Time	Chloride (mg/L)	рН	Temperature (°C)	SpecificConductance (µS/cm)	Sample Observation (Color, Odor, Etc.)		
1310	2067	7.77	29.67	13100	Clear, no odor, decent flow		

Analysis	Bottle Size	Preservative	Quantity	Method Number	Holding Time
Lead	1 500 mL HDPE		1	6010B	180 days
Mercury			HNO ₃ 1		28 days
RDX	1 Liter Archen Clear	Nega	2	8330	7 days to extraction; analyze w/in 40 days after extraction
DEHP	1 Liter Amber Glass	r Amber Glass None 3		8270C	7 days to extraction; analyze w/in 40 days after extraction
Bottle Count			4		

Note:

Freshwater Conductivity - up to 2,000 uS/cm

Location (Seep ID): <u>SP-4 (Blind)</u>

Time on Site: <u>1230</u>

Time Departed Site: <u>1345</u> Low Tide Time: 1611 Date: 06/25/2024 Weather Condition: <u>Sunny</u> Sample Collection Method: <u>Grab</u>

Personnel: RT / HI / JSN

	Field Analyses						
Sample Time	Chloride (mg/L)	рН	Temperature (°C)	SpecificConductance (µS/cm)	Sample Observation (Color, Odor, Etc.)		
1315	2067	7.77	29.67	13100	Clear, no odor, decent flow		

Analysis	Bottle Size	Preservative	Quantity	Method Number	Holding Time
Lead	1 500 mL HDPE	HNO ₃	1	6010B	180 days
Mercury	I SOUTHLEDPE		T	7470A	28 days
RDX	1 Liter Archen Clear	Nega	2	8330	7 days to extraction; analyze w/in 40 days after extraction
DEHP	1 Liter Amber Glass	None	3	8270C	7 days to extraction; analyze w/in 40 days after extraction
Bottle Count			4		

Note:

Freshwater Conductivity - up to 2,000 uS/cm

Location (Seep ID): SP-5

Time on Site: <u>1230</u>

Time Departed Site: <u>1345</u> Low Tide Time: <u>1611</u> Date: 06/25/2024 Weather Condition: Sunny Sample Collection Method: Grab

Personnel: <u>RT / HI / JSN</u>

	Field Analyses						
Sample Time	Chloride (mg/L)	рН	Temperature (°C)	Specific Conductance (µS/cm)	Sample Observation (Color, Odor, Etc.)		
1257	700	7.33	27.29	31.60	Clear, no odor, low flow		

Analysis	Bottle Size	Preservative	Quantity	Method Number	Holding Time
Lead	1 500 mL HDPE		1	6010B	180 days
Mercury		HNO₃	T	7470A	28 days
RDX	1 Liter Archer Cleas			8330	7 days to extraction; analyze w/in 40 days after extraction
DEHP	1 Liter Amber Glass	None	3	8270C	7 days to extraction; analyze w/in 40 days after extraction
Bottle Count			4		

Note:

Freshwater Conductivity - up to 2,000 uS/cm

Andersen AFB Open Burn Open Detonation Semiannual Groundwater Sampling Form (Detection Monitoring)

Ref Cas Elev	II ID: <u>IRI</u> erence ing Diar vation/[Point/T neter: Depth to	о Тор о	f Scr	een:	<u>5 inche</u> 532 fee	es et	E -	Date: <u>06/25/2024</u> By: <u>HI / RT / JSN</u>
Dep		/ater (D				-			a Level: <u>-1.41</u> (552 – DTW = WC)
	nalyses		Purgin	g					
Time	рН	Temp (°C)	Specific Conduct (µS/cm)	ance	Turbidity (NTU)		olume urged (gal)	DTW (ft)	Observations (Color, Odor, etc.)
1529	7.66	31.21	0.62	26	0.	.0		536.77	No color, no odor
	pH pH		Specific Conduct (µS/cm)	ance	Turbidity (NTU	/ V	olume urged (gal)	DTW (ft)	Observations (Color, Odor, etc.)
1531	8.10	31.22	(μs/cm) 0.62		0.	.0		536.77	No color, no odor
1533	8.22	31.22	0.62	26	0.	.0		536.77	No color, no odor
1536	8.24	31.23	0.62	26	0.	.0		536.77	No color, no odor
1540	8.25	31.25	0.62	26	0.	.0		536.77	No color, no odor
1545	8.26	31.23	0.62	26	0.	.0		536.77	No color, no odor
1550	8.26	31.23	0.62	26	0.	.0		536.77	No color, no odor
Ana	lysis	Bottle	Size	Pres	ervative	Quantity	Metho	d Number	Holding Time
Lead		1 500 m			₃(5 ml)	1	6010B		180 days
Mercury RDX		1 500 m 1 Liter A Gla	Amber	HNO None	₃(5 ml) e	1	7470C 8330		28 days 7 days to extraction; analyze w/in 40 days after extraction
DEHP		1 Liter A Gla	Amber	None	5	1	8270C		7 days
Bottle Cou	nt:	•				4			

Note:

Field parameters were measured for every 1 Liter of water purged until the field parameters were stabilized. Total volume of water purged was approximately 3.0 gallons.

APPENDIX D

Field Measurements

Groundwater Field Parameter Result Summary 2024 1st Semiannual Detection Monitoring (Dry Season) Table 3: Parameter List¹

LOCATION ⁴	SAMPLE DATE	SAMPLE TIME	WELL ELEVATION (ft)	DEPTH TO WATER ³ (ft)	CHLORIDE (mg/L)	TEMPERATURE (°C)	рН (s.u.)	SPECIFIC CONDUCTANCE (µS/cm)	TURBIDITY (NTU)
SP-1	6/25/2024	1334	N/A	N/A	571	28.67	7.7	3500	N/A
SP-2	6/25/2024	1322	N/A	N/A	600	26.82	7.5	2170	N/A
SP-4	6/25/2024	1310	N/A	N/A	2067	29.67	7.8	13100	N/A
SP-5	6/25/2024	1257	N/A	N/A	700	27.29	7.3	3160	N/A
SP-4 (Blind)	6/25/2024	1315	N/A	N/A	2067	29.67	7.8	13100	N/A
		1531	552	536.8	N/A	31.22	8.1	0.626	0.000
		1533	552	536.8	N/A	31.22	8.2	0.626	0.000
IRP-52 ²	6/25/2024	1536	552	536.8	N/A	31.23	8.2	0.626	0.000
IRP-52	0/23/2024	1540	552	536.8	N/A	31.25	8.3	0.626	0.000
		1545	552	536.8	N/A	31.23	8.3	0.626	0.000
		1550	552	536.8	N/A	31.23	8.3	0.626	0.000

Definitions and Abbreviations:

ft - feet

mg/L - milligram per liter

S.U. - standard unit °C - Celsius

c - ceisius

μS/cm - microsiemens per centimeter NTU - nephelometric turbidity unit

Blind - blind sample, also known as (DUP) duplicate sample

Notes:

¹ The above measurement data were taken prior to collecting samples for the 2024 1st OBOD semiannual groundwater detection monitoring (Dry season) sampling event.

² Results for well IRP-52 were taken during purging. Sample collection did not start until all field parameters have stabilized, as required in the approved OB/OD Range Ground Monitoring Plan.

³ Depth to water was measured from the top of the well PVC casing.

⁴ SP-1, SP-2, SP-4, and SP-5 are freshwater seeps located at the EOD Range, along Tarague Beach. IRP-52 is located around AAFB North ramp.

APPENDIX E

Data Summary

Groundwater Quality Result Summary 2024 1st Semiannual Detection Monitoring (Dry Season)

Sample Date	Sample ID	Sample Time	Parameter	Lead (ug/L)	Mercury (ug/L)	Bis(2-ethylhexyl) phthalate or DEHP (ug/L)	Cyclotrimethylenetrinitramine or RDX (ug/L) ¹
			MCL	15.0	2.0	6.0	
6/25/2024	570-189834-1	1334	SP-1	ND	ND	ND	ND
6/25/2024	570-189834-2	1322	SP-2	ND	ND	ND	ND
6/25/2024	570-189834-3	1310	SP-4	ND	ND	ND	ND
6/25/2024	570-189834-4	1257	SP-5	ND	ND	ND	ND
6/25/2024	570-189834-5	1315	SP-4 (DUP)	ND	ND	ND	ND
6/25/2024	570-189834-7	1410	IRP-52	ND	ND	ND	ND

Table 4: Result Summary

Definitions and Abbreviations:

ND - Not Detected at the reporting limit (RL) or method detection limit (MDL)

ug/L - micrograms per liter

DUP - Duplicate Sample

MCL- Maximum Contaminant Level

Notes:

¹ RDX does not have an established MCL. For RDX in tap water, EPA calculated a screening level of 0.7 ug/L as a guideline (EPA 2017), but not as a regulatory limit.

APPENDIX F

Analytical Laboratory Results

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Brenda Nuding EA Engineering, Science, and Technology 19700 SW Johnson Road West Linn OR 97068 Generated 7/22/2024 4:21 PM

JOB DESCRIPTION

NAVFAC Guam Compliance

JOB NUMBER

570-189834-1

Eurofins Calscience 2841 Dow Avenue, Suite 100 Tustin CA 92780

Eurofins Calscience

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Calscience Project Manager.

Authorization

Generated 7/22/2024 4:21 PM

Authorized for release by Jimmy Jin, Project Manager I <u>Ming.Jin@et.eurofinsus.com</u> Designee for Carla Hollowell, Project Manager I <u>Carla.Hollowell@et.eurofinsus.com</u> 714 895-5494

Table of Contents

Cover Title Page	1
Data Summaries	6
Definitions	6
Case Narrative	7
Detection Summary	9
Client Sample Results	10
Default Detection Limits	17
Surrogate Summary	18
QC Sample Results	19
QC Association	22
Chronicle	25
Certification Summary	29
Method Summary	
Sample Summary	31
Manual Integration Summary	
Reagent Traceability	42
COAs	61
Organic Sample Data	321
GC/MS Semi VOA	
Method 8270C SIM	
Method 8270C SIM QC Summary	
Method 8270C SIM Sample Data	338
Standards Data	
Method 8270C SIM ICAL Data	
Method 8270C SIM CCAL Data	702
Raw QC Data	

Table of Contents

	Method 8270C SIM Tune Data	
	Method 8270C SIM Blank Data	
	Method 8270C SIM LCS/LCSD Data	
	Method 8270C SIM Run Logs	785
	Method 8270C SIM Prep Data	
HPLC/I	C	794
Met	nod 8330	
	Method 8330 QC Summary	
	Method 8330 Sample Data	
	Standards Data	
	Method 8330 ICAL Data	
	Method 8330 CCAL Data	
	Raw QC Data	
	Method 8330 Blank Data	
	Method 8330 LCS/LCSD Data	928
	Method 8330 Run Logs	936
	Method 8330 Prep Data	938
Inorganic	Sample Data	
Metals	Data	
Met	Cover Page	
Met	Sample Data	
Met	QC Data	
	Met ICV/CCV	
	Met CRQL	965
	Met Blanks	967
	Met ICSA/ICSAB	

Table of Contents

Met MS/MSD/PDS
Met LCS/LCSD
Met Serial Dilution
Met MDL
Met Linear Ranges
Met Preparation Log988
Met Analysis Run Log
Met Internal Standards
Met Prep Data
Met Raw Data1005
Shipping and Receiving Documents 1551
Client Chain of Custody1552
Sample Receipt Checklist 1554

Qualifiers	
GC/MS Semi	VOA
Qualifier	Qualifier Description
S1-	Surrogate recovery exceeds control limits, low biased.
Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)

MPN Most Probable Number

- MQL Method Quantitation Limit NC Not Calculated
- ND Not Detected at the reporting limit (or MDL or EDL if shown)
- Negative / Absent NEG
- Positive / Present POS
- Practical Quantitation Limit PQL
- PRES Presumptive
- **Quality Control** QC
- RER Relative Error Ratio (Radiochemistry)
- RL Reporting Limit or Requested Limit (Radiochemistry)
- RPD Relative Percent Difference, a measure of the relative difference between two points
- TEF Toxicity Equivalent Factor (Dioxin)
- TEQ Toxicity Equivalent Quotient (Dioxin)
- TNTC Too Numerous To Count

CASE NARRATIVE

Client: EA Engineering, Science, and Technology

Project: NAVFAC Guam Compliance

Report Number: 570-189834-1

This case narrative is in the form of an exception report, where only the anomalies related to this report, method specific performance and/or QA/QC issues are discussed. If there are no issues to report, this narrative will include a statement that documents that there are no relevant data issues.

It should be noted that samples with elevated Reporting Limits (RLs) resulting from a dilution may not be able to satisfy customer reporting limits in some cases. Such increases in the RLs are an unavoidable but acceptable consequence of sample dilution that enables quantification of target analytes within the calibration range of the instrument or that reduces the interferences thereby enabling the quantification of target analytes.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

<u>RECEIPT</u>

The samples were received on 6/27/2024 at 9:45 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperatures of the 5 coolers at receipt time were 2.7°C, 3.2°C, 3.9°C, 4.1°C and 4.5°C.

Note: All samples which require thermal preservation are considered acceptable if the arrival temperature is within 2 degrees Celsius of the required temperature or method specified range. For samples with a specified temperature of 4 degrees Celsius, samples with a temperature ranging from just above freezing temperature of water to 6 degrees Celsius shall be acceptable. Samples that are hand delivered immediately following collection may not meet these criteria, however they will be deemed acceptable according to NELAC standards, if there is evidence that the chilling process has begun, such as arrival on ice, etc.

SEMIVOLATILE ORGANIC COMPOUNDS (GC-MS SIM)

Samples SP-1-062524 (570-189834-1), SP-2-062524 (570-189834-2), SP-4-062524 (570-189834-3), SP-5-062524 (570-189834-4), Blind Sample-062524 (570-189834-5), OBOD Field Blank- 062524 (570-189834-6), IRP-52-062524 (570-189834-7), IRP-52 Field Blank- 062524 (570-189834-8) and Equipment Blank- 062524 (570-189834-9) were analyzed for Semivolatile Organic Compounds in accordance with EPA SW-846 Method 8270C SIM. The samples were prepared on 07/01/2024 and analyzed on 07/03/2024 and 07/11/2024.

2-Fluorophenol (Surrogate) and Nitrobenzene-d5 (Surrogate) failed the surrogate recovery criteria low for SP-1-062524 (570-189834-1). The sample was not re-extracted due to holding time expired therefore, the data has been reported per PM/Client request.

2-Fluorophenol (Surrogate) and Nitrobenzene-d5 (Surrogate) failed the surrogate recovery criteria low for LCS 570-456194/2-A. The samples were not re-extracted due to holding time expired therefore, the data has been reported per PM/Client request. Refer to the QC report for details.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

NITROAROMATICS AND NITRAMINES (HPLC)

Samples SP-1-062524 (570-189834-1), SP-2-062524 (570-189834-2), SP-4-062524 (570-189834-3), SP-5-062524 (570-189834-4), Blind Sample-062524 (570-189834-5), OBOD Field Blank- 062524 (570-189834-6), IRP-52-062524 (570-189834-7), IRP-52 Field Blank- 062524 (570-189834-8) and Equipment Blank- 062524 (570-189834-9) were analyzed for Nitroaromatics and Nitramines (HPLC) in accordance with EPA SW846 Method 8330. The samples were prepared on 06/28/2024 and analyzed on 07/03/2024 and 07/04/2024.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL RECOVERABLE METALS (ICP)

Samples SP-1-062524 (570-189834-1), SP-2-062524 (570-189834-2), SP-4-062524 (570-189834-3), SP-5-062524 (570-189834-4), Blind Sample-062524 (570-189834-5), OBOD Field Blank- 062524 (570-189834-6), IRP-52-062524 (570-189834-7), IRP-52 Field Blank- 062524 (570-189834-8) and Equipment Blank- 062524 (570-189834-9) were analyzed for total recoverable metals (ICP) in accordance with EPA SW-846 Method 6010B. The samples were prepared and analyzed on 06/28/2024.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL MERCURY

Samples SP-1-062524 (570-189834-1), SP-2-062524 (570-189834-2), SP-4-062524 (570-189834-3), SP-5-062524 (570-189834-4), Blind Sample-062524 (570-189834-5), OBOD Field Blank- 062524 (570-189834-6), IRP-52-062524 (570-189834-7), IRP-52 Field Blank- 062524 (570-189834-8) and Equipment Blank- 062524 (570-189834-9) were analyzed for total mercury in accordance with EPA SW-846 Method 7470A. The samples were prepared and analyzed on 06/28/2024.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Detection Summary

Detection Summary	
Client: EA Engineering, Science, and Technology Project/Site: NAVFAC Guam Compliance	Job ID: 570-189834-1
Client Sample ID: SP-1-062524	Lab Sample ID: 570-189834-1
No Detections.	
Client Sample ID: SP-2-062524	Lab Sample ID: 570-189834-2
No Detections.	
Client Sample ID: SP-4-062524	Lab Sample ID: 570-189834-3
No Detections.	
Client Sample ID: SP-5-062524	Lab Sample ID: 570-189834-4
No Detections.	
Client Sample ID: Blind Sample-062524	Lab Sample ID: 570-189834-5
No Detections.	
Client Sample ID: OBOD Field Blank- 062524	Lab Sample ID: 570-189834-6
No Detections.	
Client Sample ID: IRP-52-062524	Lab Sample ID: 570-189834-7
No Detections.	
Client Sample ID: IRP-52 Field Blank- 062524	Lab Sample ID: 570-189834-8
No Detections.	
Client Sample ID: Equipment Blank- 062524	Lab Sample ID: 570-189834-9

No Detections.

Client Sample Results

Method: SW846 8270C SIM - Semivolatile Organic Compounds (GC/MS SIM)

									89834-1 x: Water	
Date Received: 06/27/24 09		0				-	Description	A	D'I 5	
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac	
Bis(2-ethylhexyl) phthalate	ND		5.0	3.6	ug/L		07/01/24 05:28	07/03/24 19:12	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
2,4,6-Tribromophenol (Surr)	63		20 - 132				07/01/24 05:28	07/03/24 19:12	1	
2-Fluorophenol (Surr)	4	S1-	18 - 100				07/01/24 05:28	07/03/24 19:12	1	
Nitrobenzene-d5 (Surr)	22	S1-	32 - 120				07/01/24 05:28	07/03/24 19:12	1	
Phenol-d6 (Surr)	11		10 - 100				07/01/24 05:28	07/03/24 19:12	1	
p-Terphenyl-d14 (Surr)	53		39 - 129				07/01/24 05:28	07/03/24 19:12	1	
2-Fluorobiphenyl (Surr)	46		31 - 120				07/01/24 05:28	07/03/24 19:12	1	

Client Sample ID: SP-2-062524

Date Collected: 06/25/24 13:22 Date Received: 06/27/24 09:45

Analyte	Result Qualifier	RL	MDL Unit	D Prepared Analyzed Dil Fac
Bis(2-ethylhexyl) phthalate	ND	4.9	3.5 ug/L	07/01/24 05:28 07/03/24 19:33 1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	58	20 - 132	07/01/24 05:28	07/03/24 19:33	1
2-Fluorophenol (Surr)	44	18 - 100	07/01/24 05:28	07/03/24 19:33	1
Nitrobenzene-d5 (Surr)	42	32 - 120	07/01/24 05:28	07/03/24 19:33	1
Phenol-d6 (Surr)	25	10 - 100	07/01/24 05:28	07/03/24 19:33	1
p-Terphenyl-d14 (Surr)	103	39 - 129	07/01/24 05:28	07/03/24 19:33	1
2-Fluorobiphenyl (Surr)	107	31 - 120	07/01/24 05:28	07/03/24 19:33	1

Client Sample ID: SP-4-062524 Date Collected: 06/25/24 13:10 Date Received: 06/27/24 09:45

Analyte		Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Bis(2-ethylhexyl) phthalate	ND		4.9	3.5 ug/L		07/01/24 05:28	07/11/24 01:12	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	97		20 - 132			07/01/24 05:28	07/11/24 01:12	1
2-Fluorophenol (Surr)	43		18 - 100			07/01/24 05:28	07/11/24 01:12	1
Nitrobenzene-d5 (Surr)	82		32 - 120			07/01/24 05:28	07/11/24 01:12	1
Phenol-d6 (Surr)	26		10 - 100			07/01/24 05:28	07/11/24 01:12	1
p-Terphenyl-d14 (Surr)	84		39 - 129			07/01/24 05:28	07/11/24 01:12	1
2-Fluorobiphenyl (Surr)	77		31 - 120			07/01/24 05:28	07/11/24 01:12	1

Client Sample ID: SP-5-062524 Date Collected: 06/25/24 12:57 Date Received: 06/27/24 09:45

Analyte

2-Fluorobiphenyl (Surr)

	Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
ND		4.9	3.6 ug/L	07/01/24 05:28	07/11/24 01:34	1
%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
90		20 - 132		07/01/24 05:28	07/11/24 01:34	1
42		18 - 100		07/01/24 05:28	07/11/24 01:34	1
78		32 - 120		07/01/24 05:28	07/11/24 01:34	1
27		10 - 100		07/01/24 05:28	07/11/24 01:34	1
81		39 - 129		07/01/24 05:28	07/11/24 01:34	1
_	ND %Recovery 90 42 78 27	%Recovery 90Qualifier90427827	ND 4.9 %Recovery Qualifier Limits 9C 20 - 132 42 42 18 - 100 76 76 32 - 120 27	ND 4.9 3.6 ug/L %Recovery Qualifier Limits 90 20 - 132 20 - 132 42 18 - 100 76 76 32 - 120 27	ND 4.9 3.6 ug/L 07/01/24 05:28 %Recovery Qualifier Limits Prepared 90 20 - 132 07/01/24 05:28 42 18 - 100 07/01/24 05:28 76 32 - 120 07/01/24 05:28 27 10 - 100 07/01/24 05:28	ND 4.9 3.6 ug/L 07/01/24 05:28 07/11/24 01:34 %Recovery Qualifier Limits Prepared Analyzed 90 20 - 132 07/01/24 05:28 07/11/24 01:34 42 18 - 100 07/01/24 05:28 07/11/24 01:34 76 32 - 120 07/01/24 05:28 07/11/24 01:34 07/01/24 05:28 07/11/24 01:34 07/01/24 05:28 07/11/24 01:34 07/01/24 05:28 07/11/24 01:34 07/01/24 05:28 07/11/24 01:34

Eurofins Calscience

07/01/24 05:28 07/11/24 01:34

31 - 120

73

Lab Sample ID: 570-189834-2 **Matrix: Water**

Lab Sample ID: 570-189834-3 Matrix: Water

Lab Sample ID: 570-189834-4 **Matrix: Water** ac

1

Method: SW846 8270C SIM - Semivolatile Organic Compounds (GC/MS SIM)

ate Received: 06/27/24 09:	:30 45							Matrix:	water
nalyte	Result G	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
s(2-ethylhexyl) phthalate	ND		4.9	3.5	ug/L		07/01/24 05:28	07/11/24 01:56	,
urrogate	%Recovery G	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4,6-Tribromophenol (Surr)	83		20 - 132				07/01/24 05:28	07/11/24 01:56	
Fluorophenol (Surr)	40		18 - 100				07/01/24 05:28	07/11/24 01:56	
itrobenzene-d5 (Surr)	71		32 - 120				07/01/24 05:28	07/11/24 01:56	
henol-d6 (Surr)	26		10 - 100				07/01/24 05:28	07/11/24 01:56	
Terphenyl-d14 (Surr)	79		39 - 129				07/01/24 05:28	07/11/24 01:56	
Fluorobiphenyl (Surr) lient Sample ID: OBOD Fie ate Collected: 06/25/24 12: ate Received: 06/27/24 09:	:51	24	31 - 120				07/01/24 05:28 Lab Sam	07/11/24 01:56 ple ID: 570-18 Matrix:	
Fluorobiphenyl (Surr) lient Sample ID: OBOD Fie ate Collected: 06/25/24 12:	ld Blank- 062524 :51	24	31 - 120					ple ID: 570-18	9834-0
Fluorobiphenyl (Surr) lient Sample ID: OBOD Fie ate Collected: 06/25/24 12: ate Received: 06/27/24 09: nalyte	dd Blank- 06252 :51 45 Result C		RL	MDL 3.5		D	Lab Sam	ple ID: 570-18 Matrix: Analyzed	9834-0 Wate
Fluorobiphenyl (Surr) lient Sample ID: OBOD Fie ate Collected: 06/25/24 12:	d Blank- 062524 :51 45				Unit ug/L	<u>D</u>	Lab Sam	ple ID: 570-18 Matrix:	9834-0 Wate Dil Fa
Fluorobiphenyl (Surr) lient Sample ID: OBOD Fie ate Collected: 06/25/24 12: ate Received: 06/27/24 09: nalyte	dd Blank- 06252 :51 45 Result C	Qualifier	RL			D	Lab Sam	ple ID: 570-18 Matrix: Analyzed	9834-(Wate Dil Fa
Fluorobiphenyl (Surr) lient Sample ID: OBOD Fie ate Collected: 06/25/24 12: ate Received: 06/27/24 09: nalyte s(2-ethylhexyl) phthalate	eld Blank- 062524 :51 45 Result C	Qualifier	RL 4.8			<u>D</u>	Lab Sam Prepared 07/01/24 05:28	ple ID: 570-18 Matrix: Analyzed 07/11/24 02:18	9834-(Wate Dil Fa Dil Fa
Fluorobiphenyl (Surr) lient Sample ID: OBOD Fie ate Collected: 06/25/24 12: ate Received: 06/27/24 09: nalyte s(2-ethylhexyl) phthalate urrogate	eld Blank- 06252 :51 45 	Qualifier	RL 4.8			<u>D</u>	Lab Sam Prepared 07/01/24 05:28 Prepared	ple ID: 570-18 Matrix: Analyzed 07/11/24 02:18 Analyzed	9834-(Wate Dil Fa Dil Fa
Fluorobiphenyl (Surr) lient Sample ID: OBOD Fiel ate Collected: 06/25/24 12: ate Received: 06/27/24 09: nalyte s(2-ethylhexyl) phthalate urrogate 4,6-Tribromophenol (Surr)	Eid Blank- 06252 :51 45	Qualifier	RL 4.8 Limits 20 - 132			<u>D</u>	Lab Sam Prepared 07/01/24 05:28 Prepared 07/01/24 05:28	ple ID: 570-18 Matrix: Analyzed 07/11/24 02:18 Analyzed 07/11/24 02:18	9834-0 Water Dil Fa Dil Fa
Fluorobiphenyl (Surr) lient Sample ID: OBOD Fie ate Collected: 06/25/24 12: ate Received: 06/27/24 09: nalyte s(2-ethylhexyl) phthalate urrogate 4,6-Tribromophenol (Surr) Fluorophenol (Surr)	$\frac{10 \text{ Blank- 062524}}{151}$ $\frac{100 \text{ Result}}{100 \text{ Result}}$ $\frac{100 \text{ Result}}{100 \text{ Result}}$ $\frac{100 \text{ Result}}{100 \text{ Result}}$	Qualifier	RL 4.8 Limits 20 - 132 18 - 100			D	Lab Sam Prepared 07/01/24 05:28 Prepared 07/01/24 05:28 07/01/24 05:28	Analyzed 07/11/24 02:18 Analyzed 07/11/24 02:18 07/11/24 02:18	9834-0 : Wate Dil Fa Dil Fa
Fluorobiphenyl (Surr) lient Sample ID: OBOD Fie ate Collected: 06/25/24 12: ate Received: 06/27/24 09: nalyte s(2-ethylhexyl) phthalate urrogate 4,6-Tribromophenol (Surr) Fluorophenol (Surr) itrobenzene-d5 (Surr)	$\frac{10 \text{ Blank- 06252}}{100000000000000000000000000000000000$	Qualifier	RL 4.8 Limits 20 - 132 18 - 100 32 - 120			<u>D</u>	Lab Sam Prepared 07/01/24 05:28 Prepared 07/01/24 05:28 07/01/24 05:28 07/01/24 05:28	Analyzed 07/11/24 02:18 Analyzed 07/11/24 02:18 07/11/24 02:18 07/11/24 02:18 07/11/24 02:18 07/11/24 02:18	

Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Bis(2-ethylhexyl) phthalate	ND		4.9	3.5	ug/L		07/01/24 05:28	07/03/24 21:20	I
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	54		20 - 132				07/01/24 05:28	07/03/24 21:20	1
2-Fluorophenol (Surr)	24		18 - 100				07/01/24 05:28	07/03/24 21:20	1
Nitrobenzene-d5 (Surr)	41		32 - 120				07/01/24 05:28	07/03/24 21:20	1
Phenol-d6 (Surr)	14		10 - 100				07/01/24 05:28	07/03/24 21:20	1
p-Terphenyl-d14 (Surr)	67		39 - 129				07/01/24 05:28	07/03/24 21:20	1
2-Fluorobiphenyl (Surr)	55		31 - 120				07/01/24 05:28	07/03/24 21:20	1

Client Sample ID: IRP-52 Field Blank- 062524 Date Collected: 06/25/24 14:12 Date Received: 06/27/24 09:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bis(2-ethylhexyl) phthalate	ND		4.8	3.5	ug/L		07/01/24 05:28	07/03/24 21:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	74		20 - 132				07/01/24 05:28	07/03/24 21:41	1
2-Fluorophenol (Surr)	38		18 - 100				07/01/24 05:28	07/03/24 21:41	1
Nitrobenzene-d5 (Surr)	94		32 - 120				07/01/24 05:28	07/03/24 21:41	1
Phenol-d6 (Surr)	24		10 - 100				07/01/24 05:28	07/03/24 21:41	1
p-Terphenyl-d14 (Surr)	58		39 - 129				07/01/24 05:28	07/03/24 21:41	1
2-Fluorobiphenyl (Surr)	48		31 - 120				07/01/24 05:28	07/03/24 21:41	1

Eurofins Calscience

Lab Sample ID: 570-189834-8

Matrix: Water

Method: SW846 8270C SIM - Semivolatile Organic Compounds (GC/MS SIM)

Client Sample ID: Equipme Date Collected: 06/25/24 09		Lab Sample ID: 570-189834-9 Matrix: Wate							
Date Received: 06/27/24 09 Analyte Bis(2-ethylhexyl) phthalate):45 Result G ND	Qualifier		MDL 3.4	Unit ug/L	<u>D</u>	Prepared 07/01/24 05:28	Analyzed 07/03/24 22:03	Dil Fac
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	8 4		20 - 132				07/01/24 05:28	07/03/24 22:03	1
2-Fluorophenol (Surr)	38		18 - 100				07/01/24 05:28	07/03/24 22:03	1
Nitrobenzene-d5 (Surr)	80		32 - 120				07/01/24 05:28	07/03/24 22:03	1
Phenol-d6 (Surr)	24		10 - 100				07/01/24 05:28	07/03/24 22:03	1
p-Terphenyl-d14 (Surr)	63		39 - 129				07/01/24 05:28	07/03/24 22:03	1
2-Fluorobiphenyl (Surr)	89		31 - 120				07/01/24 05:28	07/03/24 22:03	1

Eurofins Calscience

Method: SW846 8330 - Nitroaromatics and Nitramines (HPLC) Client Sample ID: SP-1-062524 Lab Samp e ID: 570-189834-1 Date Collected: 06/25/24 13:34 Matriv: Water Date Received: 06/27/24 09:45 Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed **Dil Fac** RDX 0.50 ug/L ND 1.2 06/28/24 20:54 07/03/24 23:19 1 Surrogate Qualifier Limits Prepared %Recovery Analyzed Dil Fac 1,2-Dinitrobenzene (Surr) 124 60 - 150 06/28/24 20:54 07/03/24 23:19 1 Client Sample ID: SP-2-062524 Lab Sample ID: 570-189834-2 Date Collected: 06/25/24 13:22 Matrix: Water Date Received: 06/27/24 09:45 Analyte **Result Qualifier** RL MDL Unit Analyzed **Dil Fac** D Prepared 06/28/24 20:54 07/03/24 23:42 RDX ND 1.1 0.47 ug/L 1 Qualifier Limits Dil Fac Surrogate %Recovery Prepared Analyzed 1,2-Dinitrobenzene (Surr) 123 60 - 150 06/28/24 20:54 07/03/24 23:42 1 Client Sample ID: SP-4-062524 Lab Sample ID: 570-189834-3 Date Collected: 06/25/24 13:10 Matrix: Water Date Received: 06/27/24 09:45 Analyte **Result Qualifier MDL** Unit **Dil Fac** RL D Prepared Analyzed RDX ND 11 0.47 ug/L 06/28/24 20:54 07/04/24 00:05 1 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1,2-Dinitrobenzene (Surr) 125 60 - 150 06/28/24 20:54 07/04/24 00:05 1 Client Sample ID: SP-5-062524 Lab Sample ID: 570-189834-4 Date Collected: 06/25/24 12:57 Matrix: Water Date Received: 06/27/24 09:45 Analyte MDL Unit **Result Qualifier** RL D Prepared Analyzed Dil Fac RDX ND 1.2 0.49 ug/L 06/28/24 20:54 07/04/24 00:52 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1,2-Dinitrobenzene (Surr) 60 - 150 06/28/24 20:54 07/04/24 00:52 124 Client Sample ID: Blind Sample-062524 Lab Sample ID: 570-189834-5 Date Collected: 06/25/24 12:30 Matrix: Water Date Received: 06/27/24 09:45 Analyte Result Qualifier RL MDL Unit D Prepared Analyzed **Dil Fac** 06/28/24 20:54 07/04/24 01:16 RDX ND 1.1 0.47 ug/L %Recovery Qualifier Limits Prepared Analvzed Dil Fac Surrogate 1,2-Dinitrobenzene (Surr) 60 - 150 06/28/24 20:54 07/04/24 01:16 123 Client Sample ID: OBOD Field Blank- 062524 Lab Sample ID: 570-189834-6 Date Collected: 06/25/24 12:51 Matrix: Water Date Received: 06/27/24 09:45 MDL Unit Analyte **Result Qualifier** RL D Prepared Analyzed Dil Fac 0.47 ug/L RDX ND 1.1 06/28/24 20:54 07/04/24 01:39 1 %Recovery Surrogate Qualifier Limits Prepared Analvzed Dil Fac 06/28/24 20:54 07/04/24 01:39

1,2-Dinitrobenzene (Surr)

120 60 - 150

Eurofins Calscience

Method: SW846 8330 - Nitroaromatics and Nitramines (HPLC) Client Sample ID: IRP-52-062524 Lab Sample ID: 570-189834-7 Date Collected: 06/25/24 15:52 Matrix: Water Date Received: 06/27/24 09:45 MDL Unit Analyte **Result Qualifier** RL D Prepared Analyzed Dil Fac 0.47 ug/L RDX ND 06/28/24 20:54 07/04/24 02:02 1.1 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1,2-Dinitrobenzene (Surr) 124 60 - 150 06/28/24 20:54 07/04/24 02:02 1 Client Sample ID: IRP-52 Field Blank- 062524 Lab Sample ID: 570-189834-8 Date Collected: 06/25/24 14:12 **Matrix: Water** Date Received: 06/27/24 09:45 Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac RDX 0.50 ug/L 06/28/24 20:54 07/04/24 02:26 ND 1.2 1 Dil Fac Surrogate %Recovery Qualifier Limits Prepared Analyzed 60 - 150 1,2-Dinitrobenzene (Surr) 121 06/28/24 20:54 07/04/24 02:26 1 Client Sample ID: Equipment Blank- 062524 Lab Sample ID: 570-189834-9 Date Collected: 06/25/24 09:45 **Matrix: Water** Date Received: 06/27/24 09:45 Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac RDX ND 1.2 0.48 ug/L 06/28/24 20:54 07/04/24 02:49 1 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1,2-Dinitrobenzene (Surr) 124 60 - 150 06/28/24 20:54 07/04/24 02:49 1

Client Sample Results

Method: SW846 6010B - Metals (ICP) - Total Recoverable

Client Sample ID: SP-1-062524 Date Collected: 06/25/24 13:34 Date Received: 06/27/24 09:45							Lab Sam	ple ID: 570-18 Matrix	89834-1 : Water
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.0500	0.00527	mg/L		· · · · · · · · · · · · · · · · · · ·	06/28/24 16:21	1
Client Sample ID: SP-2-062524 Date Collected: 06/25/24 13:22 Date Received: 06/27/24 09:45							Lab Sam	ple ID: 570-18 Matrix	89834-2 : Water
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.0500	0.00527	mg/L		06/28/24 06:45	06/28/24 16:42	1
Client Sample ID: SP-4-062524 Date Collected: 06/25/24 13:10 Date Received: 06/27/24 09:45							Lab Sam	ple ID: 570-18 Matrix	89834-3 : Water
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.0500	0.00527	mg/L		06/28/24 06:45	06/28/24 16:44	1
Client Sample ID: SP-5-062524 Date Collected: 06/25/24 12:57 Date Received: 06/27/24 09:45							Lab Sam	ple ID: 570-18 Matrix	89834-4 : Water
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Lead	ND		0.0500	0.00527	mg/L		06/28/24 06:45	06/28/24 16:47	1
Client Sample ID: Blind Sample-0 Date Collected: 06/25/24 12:30 Date Received: 06/27/24 09:45	062524						Lab Sam	ple ID: 570-18 Matrix	89834-5 : Water
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.0500	0.00527	mg/L		06/28/24 06:45	06/28/24 16:49	1
Client Sample ID: OBOD Field Bla Date Collected: 06/25/24 12:51 Date Received: 06/27/24 09:45	ank- 0625	24					Lab Sam	ple ID: 570-18 Matrix	39834-6 : Water
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Lead	ND		0.0500	0.00527	mg/L		06/28/24 06:45	06/28/24 16:52	1
Client Sample ID: IRP-52-062524 Date Collected: 06/25/24 15:52 Date Received: 06/27/24 09:45							Lab Sam	ple ID: 570-18 Matrix	89834-7 : Water
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.0500	0.00527	mg/L		06/28/24 06:45	06/28/24 16:54	1
Client Sample ID: IRP-52 Field BI Date Collected: 06/25/24 14:12	ank- 0625	524					Lab Sam	ple ID: 570-18 Matrix	89834-8 : Water
Date Received: 06/27/24 09:45									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
	Result ND	Qualifier	RL 0.0500	MDL 0.00527	-	<u>D</u>	· · · · · · · · · · · · · · · · · · ·	Analyzed 06/28/24 16:56	Dil Fac
Analyte	ND				-	<u>D</u>	06/28/24 06:45	06/28/24 16:56	1
Analyte Lead Client Sample ID: Equipment Bla Date Collected: 06/25/24 09:45	ND nk- 06252			0.00527	-	<u>D</u>	06/28/24 06:45	06/28/24 16:56	1 89834-9

Method: SW846 7470A - Mercury (CVAA)

Client Sample ID: SP-1-062524 Date Collected: 06/25/24 13:34							Lab Sam	ple ID: 570-18 Matrix	89834-1 : Water
Date Received: 06/27/24 09:45	Baardi	0			11	-	D	A	D11 5
Analyte	ND	Qualifier	RL 0.000200	0.000124		<u>D</u>	Prepared	Analyzed	Dil Fac
Mercury	ND		0.000200	0.000124	mg/∟		06/26/24 08:00	06/28/24 15:44	I
Client Sample ID: SP-2-062524 Date Collected: 06/25/24 13:22 Date Received: 06/27/24 09:45							Lab Sam	ple ID: 570-18 Matrix	89834-2 : Water
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.000200	0.000124			06/28/24 08:00		1
					-				
Client Sample ID: SP-4-062524							Lab Sam	ple ID: 570-18	
Date Collected: 06/25/24 13:10								Matrix	: Water
Date Received: 06/27/24 09:45	Desult	Qualifian		MDI	11	_	Desmanad	A se a la sera al	
Analyte		Qualifier	RL 0.000200		Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.000200	0.000124	mg/∟		06/28/24 08:00	06/28/24 15:48	1
Client Sample ID: SP-5-062524 Date Collected: 06/25/24 12:57 Date Received: 06/27/24 09:45							Lab Sam	ple ID: 570-18 Matrix	89834-4 : Water
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.000200	0.000124	mg/L		06/28/24 08:00	06/28/24 15:50	1
Client Sample ID: Blind Sample-(Date Collected: 06/25/24 12:30 Date Received: 06/27/24 09:45	062524						Lab Sam	ple ID: 570-18 Matrix	39834-5 : Water
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Result ND	Qualifier	RL 0.000200	MDL 0.000124		<u>D</u>	Prepared 06/28/24 08:00		Dil Fac 1
Analyte	ND					<u> </u>	06/28/24 08:00	06/28/24 15:52	1
Analyte Mercury Client Sample ID: OBOD Field Bl Date Collected: 06/25/24 12:51	ND ank- 0625			0.000124 MDL	mg/L Unit	D	06/28/24 08:00	06/28/24 15:52	1 39834-6
Analyte Mercury Client Sample ID: OBOD Field Bl Date Collected: 06/25/24 12:51 Date Received: 06/27/24 09:45	ND ank- 0625	24	0.000200	0.000124	mg/L Unit		06/28/24 08:00	06/28/24 15:52 ple ID: 570-18 Matrix 	1 39834-6 : Water
Analyte Mercury Client Sample ID: OBOD Field Bl Date Collected: 06/25/24 12:51 Date Received: 06/27/24 09:45 Analyte	ND ank- 0625 Result	24	0.000200 RL	0.000124 MDL	mg/L Unit		06/28/24 08:00 Lab Sam Prepared 06/28/24 08:00	06/28/24 15:52 ple ID: 570-18 Matrix Analyzed 06/28/24 15:54 ple ID: 570-18	1 39834-6 : Water Dil Fac
Analyte Mercury Client Sample ID: OBOD Field Bl Date Collected: 06/25/24 12:51 Date Received: 06/27/24 09:45 Analyte Mercury Client Sample ID: IRP-52-062524 Date Collected: 06/25/24 15:52	ND ank- 0625 Result ND	24	0.000200 RL	0.000124 MDL 0.000124	mg/L Unit		06/28/24 08:00 Lab Sam Prepared 06/28/24 08:00	06/28/24 15:52 ple ID: 570-18 Matrix Analyzed 06/28/24 15:54 ple ID: 570-18	1 39834-6 : Water Dil Fac 1 39834-7
Analyte Mercury Client Sample ID: OBOD Field Bl Date Collected: 06/25/24 12:51 Date Received: 06/27/24 09:45 Analyte Mercury Client Sample ID: IRP-52-062524 Date Collected: 06/25/24 15:52 Date Received: 06/27/24 09:45	ND ank- 0625 Result ND	24 Qualifier	0.000200 RL 0.000200	0.000124 MDL 0.000124	Unit mg/L mg/L Unit	D_	06/28/24 08:00 Lab Sam Prepared 06/28/24 08:00 Lab Sam Prepared	06/28/24 15:52 ple ID: 570-18 Matrix Analyzed 06/28/24 15:54 ple ID: 570-18 Matrix	1 39834-6 : Water <u>Dil Fac</u> 1 39834-7 : Water
Analyte Mercury Client Sample ID: OBOD Field Bit Date Collected: 06/25/24 12:51 Date Received: 06/27/24 09:45 Analyte Mercury Client Sample ID: IRP-52-062524 Date Collected: 06/25/24 15:52 Date Received: 06/25/24 09:45 Analyte	ND ank- 0625 Result ND Result ND	24 Qualifier Qualifier	0.000200 RL 0.000200 RL	0.000124 MDL 0.000124 MDL	Unit mg/L mg/L Unit	D_	06/28/24 08:00 Lab Sam Prepared 06/28/24 08:00 Lab Sam Prepared 06/28/24 08:00	06/28/24 15:52 ple ID: 570-18 Matrix Analyzed 06/28/24 15:54 ple ID: 570-18 Matrix Analyzed 06/28/24 15:56 ple ID: 570-18	1 39834-6 : Water Dil Fac 1 39834-7 : Water Dil Fac 1 1
Analyte Mercury Client Sample ID: OBOD Field Bit Date Collected: 06/25/24 12:51 Date Received: 06/27/24 09:45 Analyte Mercury Client Sample ID: IRP-52-062524 Date Collected: 06/25/24 15:52 Date Received: 06/27/24 09:45 Analyte Mercury Client Sample ID: IRP-52 Field Bit Date Collected: 06/25/24 14:12 Date Collected: 06/25/24 14:12 Date Received: 06/27/24 09:45 Analyte	ND ank- 0625 Result ND Result ND	24 Qualifier Qualifier	0.000200 RL 0.000200 RL RL	0.000124 MDL 0.000124 MDL 0.000124	mg/L Unit mg/L Unit Unit	D_	06/28/24 08:00 Lab Sam Prepared 06/28/24 08:00 Lab Sam Prepared 06/28/24 08:00	06/28/24 15:52 ple ID: 570-18 Matrix Analyzed 06/28/24 15:54 ple ID: 570-18 Matrix Analyzed 06/28/24 15:56 ple ID: 570-18	1 39834-6 : Water Dil Fac 1 39834-7 : Water Dil Fac 1 89834-8
Analyte Mercury Client Sample ID: OBOD Field Blad Date Collected: 06/25/24 12:51 Date Received: 06/27/24 09:45 Analyte Mercury Client Sample ID: IRP-52-062524 Date Collected: 06/25/24 15:52 Date Received: 06/27/24 09:45 Analyte Mercury Client Sample ID: IRP-52-062524 Date Collected: 06/25/24 15:52 Date Received: 06/27/24 09:45 Analyte Mercury Client Sample ID: IRP-52 Field Bl Date Collected: 06/25/24 14:12 Date Received: 06/27/24 09:45	ND ank- 0625 Result ND Result ND	24 Qualifier Qualifier	0.000200 RL 0.000200 RL 0.000200	0.000124 MDL 0.000124 MDL 0.000124	mg/L Unit mg/L Unit Unit	D	06/28/24 08:00 Lab Sam Prepared 06/28/24 08:00 Lab Sam Prepared 06/28/24 08:00 Lab Sam	06/28/24 15:52 ple ID: 570-18 Matrix Analyzed 06/28/24 15:54 ple ID: 570-18 Matrix Analyzed 06/28/24 15:56 ple ID: 570-18 Matrix	1 39834-6 : Water Dil Fac 1 39834-7 : Water Dil Fac 1 89834-8 : Water
Analyte Mercury Client Sample ID: OBOD Field Bit Date Collected: 06/25/24 12:51 Date Received: 06/27/24 09:45 Analyte Mercury Client Sample ID: IRP-52-062524 Date Collected: 06/25/24 15:52 Date Received: 06/27/24 09:45 Analyte Mercury Client Sample ID: IRP-52 Field Bit Date Collected: 06/25/24 14:12 Date Collected: 06/25/24 14:12 Date Received: 06/27/24 09:45 Analyte	ND ank- 0625 Result ND Result ND ank- 0625 Result ND	24 Qualifier Qualifier 524 Qualifier	0.000200 RL 0.000200 RL 0.000200	0.000124 MDL 0.000124 MDL 0.000124	mg/L Unit mg/L Unit Unit	D	06/28/24 08:00 Lab Sam Prepared 06/28/24 08:00 Lab Sam Prepared 06/28/24 08:00 Lab Sam Prepared 06/28/24 08:00	06/28/24 15:52 ple ID: 570-18 Matrix Analyzed 06/28/24 15:54 ple ID: 570-18 Matrix Analyzed 06/28/24 15:56 ple ID: 570-18 Matrix Analyzed 06/28/24 15:58 ple ID: 570-18	1 39834-6 : Water Dil Fac 1 39834-7 : Water Dil Fac 1 89834-8 : Water Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1
Analyte Mercury Client Sample ID: OBOD Field Bit Date Collected: 06/25/24 12:51 Date Received: 06/27/24 09:45 Analyte Mercury Client Sample ID: IRP-52-062524 Date Collected: 06/25/24 15:52 Date Received: 06/25/24 15:52 Date Received: 06/27/24 09:45 Analyte Mercury Client Sample ID: IRP-52 Field BI Date Collected: 06/25/24 14:12 Date Received: 06/27/24 09:45 Analyte Mercury Client Sample ID: IRP-52 Field BI Date Collected: 06/25/24 14:12 Date Received: 06/27/24 09:45 Analyte Mercury Client Sample ID: Equipment Bla Date Collected: 06/25/24 09:45	ND ank- 0625 Result ND Result ND ank- 0625	24 Qualifier Qualifier 524 Qualifier	0.000200 RL 0.000200 RL 0.000200	0.000124 MDL 0.000124 MDL 0.000124 MDL 0.000124	mg/L Unit mg/L Unit mg/L Unit mg/L	D	06/28/24 08:00 Lab Sam Prepared 06/28/24 08:00 Lab Sam Prepared 06/28/24 08:00 Lab Sam Prepared 06/28/24 08:00	06/28/24 15:52 ple ID: 570-18 Matrix Analyzed 06/28/24 15:54 ple ID: 570-18 Matrix Analyzed 06/28/24 15:56 ple ID: 570-18 Matrix Analyzed 06/28/24 15:58 ple ID: 570-18	1 39834-6 : Water Dil Fac 1 39834-7 : Water Dil Fac 1 89834-8 : Water Dil Fac 1 89834-9

Default Detection Limits

Analyte	RL	MDL	Units
Bis(2-ethylhexyl) phthalate	5.0	3.6	ug/L
Method: 8330 - Nitroaromatics and Nitran Prep: 8330	nines (HPLC)	
Analyte	RL	MDL	Units
RDX	2.0	0.83	ug/L
Method: 6010B - Metals (ICP) - Total Reco Prep: 3005A	verable		
Analyte	RL	MDL	Units
		0.00507	mg/L
Lead	0.0500	0.00527	ing/∟
Lead Method: 7470A - Mercury (CVAA) Prep: 7470A	0.0500	0.00527	ing/L
Method: 7470A - Mercury (CVAA)	0.0500 RL	0.00527 MDL	Units

Method: 8270C SIM - Semivolatile Organic Compounds (GC/MS SIM) Matrix: Water

Prep Type: Total/NA

_			Pe	ercent Surro	gate Recov	ery (Accept	ance Limits)
		TBP	2FP	NBZ	PHL6	TPHd14	FBP
Lab Sample ID	Client Sample ID	(20-132)	(18-100)	(32-120)	(10-100)	(39-129)	(31-120)
570-189834-1	SP-1-062524	63	4 S1-	22 S1-	11	53	46
570-189834-2	SP-2-062524	58	44	42	25	103	107
570-189834-3	SP-4-062524	97	43	82	26	84	77
570-189834-4	SP-5-062524	90	42	78	27	81	73
70-189834-5	Blind Sample-062524	83	40	71	26	79	67
70-189834-6	OBOD Field Blank- 062524	88	36	78	21	81	73
70-189834-7	IRP-52-062524	54	24	41	14	67	55
70-189834-8	IRP-52 Field Blank- 062524	74	38	94	24	58	48
70-189834-9	Equipment Blank- 062524	84	38	80	24	63	89
.CS 570-456194/2-A	Lab Control Sample	61	15 S1-	28 S1-	11	78	35
CSD 570-456194/3-A	Lab Control Sample Dup	83	43	69	33	98	54
/IB 570-456194/1-A	Method Blank	70	33	47	17	69	78

Surrogate Legend

TBP = 2,4,6-Tribromophenol (Surr) 2FP = 2-Fluorophenol (Surr) NBZ = Nitrobenzene-d5 (Surr) PHL6 = Phenol-d6 (Surr)

TPHd14 = p-Terphenyl-d14 (Surr)

FBP = 2-Fluorobiphenyl (Surr)

Method: 8330 - Nitroaromatics and Nitramines (HPLC) Matrix: Water

Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		12DNB1	
Lab Sample ID	Client Sample ID	(60-150)	
570-189834-1	SP-1-062524	124	
570-189834-2	SP-2-062524	123	
570-189834-3	SP-4-062524	125	
570-189834-4	SP-5-062524	124	
570-189834-5	Blind Sample-062524	123	
570-189834-6	OBOD Field Blank- 062524	120	
570-189834-7	IRP-52-062524	124	
570-189834-8	IRP-52 Field Blank- 062524	121	
570-189834-9	Equipment Blank- 062524	124	
LCS 570-455925/2-A	Lab Control Sample	120	
LCSD 570-455925/3-A	Lab Control Sample Dup	118	
MB 570-455925/1-A	Method Blank	127	

Surrogate Legend

12DNB = 1,2-Dinitrobenzene (Surr)

QC Sample Results

Method: 8270C SIM - Semivolat ile C rganic C mpoun s (GC/I S SIM)

Lab Sample ID: MB 570-456194/1-A **Client Sample ID: Method Blank** Matrix: Water Prep Type: Total/NA Analysis Batch: 457377 Prep Batch: 456194 MB MB **Result Qualifier** RL **MDL** Unit D Prepared Analyzed Dil Fac Analyte Bis(2-ethylhexyl) phthalate ND 5.0 3.6 ug/L 07/01/24 05:28 07/03/24 17:25 1 MB MB Qualifier Prepared Dil Fac Surrogate %Re covery Limits Analvzed 2,4,6-Tribromophenol (Surr) 70 20 - 132 07/01/24 05:28 07/03/24 17:25 1 33 2-Fluorophenol (Surr) 18 - 100 07/01/24 05:28 07/03/24 17:25 1 Nitrobenzene-d5 (Surr) 47 32 - 120 07/01/24 05:28 07/03/24 17:25 1 10 - 100 Phenol-d6 (Surr) 17 07/01/24 05:28 07/03/24 17:25 1 p-Terphenyl-d14 (Surr) 69 39 - 129 07/01/24 05:28 07/03/24 17:25 1 2-Fluorobiphenyl (Surr) 78 31 - 120 07/01/24 05:28 07/03/24 17:25 1

Lab Sample ID: LCS 570-456194/2-A Matrix: Water Analysis Batch: 459068

Client Sample ID: Lab Control Sample Prep Type: Total/NA

(ient Samp e ID: La

Prep Batch: 456194 Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits 20.0 Bis(2-ethylhexyl) phthalate 17.62 ug/L 88 48 - 139 LCS LCS Surrogate %Recovery Qualifier Limits 20 - 132 2,4,6-Tribromophenol (Surr) 61 2-Fluorophenol (Surr) 18 - 100 15 S1-

Nitrobenzene-d5 (Surr)	28 S1-	32 - 120
Phenol-d6 (Surr)	11	10 - 100
p-Terphenyl-d14 (Surr)	78	39 - 129
2-Fluorobiphenyl (Surr)	35	31 - 120

Lab Sample ID: LCSD 570 - 456194/3-A Matrix: Water Analysis Batch: 457377

Analysis Batch: 457377							Prep Ba	tch: 4	61 9 4
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Bis(2-ethylhexyl) phthalate	20.0	15.62		ug/L		78	48 - 139	12	30

Surrogate	LCSD %Recovery	LCSD Qualifier	Limits
2,4,6-Tribromophenol (Surr)	83		20 - 132
2-Fluorophenol (Surr)	43		18 - 1 <i>0</i> 0
Nitrobenzene-d5 (Surr)	69		32 - 120
Phenol-d6 (Surr)	33		10 - 100
p-Terphenyl-d14 (Surr)	9 8		39 - 129
2-Fluorobiphenyl (Surr)	54		31 - 120

Method: 8330 - Nitroaromatics and Nitramines (HPLC)

Lab Sample ID: MB 570-455925/1-A Matrix: Water Analysis Batch: 457395								le ID: Method Prep Type: T Prep Batch:	otal/NA
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
RDX	ND		1.1	0.46	ug/L		06/28/24 19:52	07/03/24 21:45	1

Control S mpl Dup Prep Tyr : Tctal/NA

Method: 8330 - Nitroaromatics and Nitramines (HPLC) (Continued)

Surrogate	%Reco	MB MB /ery Qualifier	Limits				p,	epared	Analyz	red .	Dil Fa
1,2-Dinitrobenzene (Surr)	///////	127 Quanner	<u></u>						07/03/24		
			00 100				00/20	0/24 10.02	. 01/03/241	21.40	
Lab Sample ID: LCS 570-4	455925/2-A					Clien	it San	ple ID:	Lab Con	trol Sa	mpl
Matrix: Water									Prep Typ	be: Tota	al/N
Analysis Batch: 457395									Prep Ba	tch: 45	592
			Spike	LCS	LCS				%Rec		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
RDX			26.0	27.65		ug/L		106	42 - 150		
						- U					
_	LCS										
Surrogate	%Recovery	Qualifier	Limits								
1,2-Dinitrobenzene (Surr)	120		60 - 150								
Lab Sample ID: LCSD 570	- 455925/3-4				0	ient Sar	nnel	D· I a	Control S	mnl	Du
Matrix: Water	40002010 7						iip c i	D. LU	Prep Ty		
Analysis Batch: 457395									Prep Ba		
Analysis Daten. 407000			Spike		LCSD				%Rec		RF
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Lin
RDX		·	26.0	26.06	suaiiiiti			100	42 - 150	6	
			20.0	20.00		ug/L		100	42 - 100	U	
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
1,2-Dinitrobenzene (Surr)	118		60 - 150								
Lab Sample ID: MB 570-4 Matrix: Water									ole ID: Me e: Total F	Recove	rab
Lab Sample ID: MB 570-4 Matrix: Water		MB MB								Recove	rab
Lab Sample ID: MB 570-4 Matrix: Water Analysis Batch: 455906	55583/1-A	MB MB sult Qualifier	RL		MDL Unit	D	Ρ	rep Typ	e: Total F Prep Ba	Recove tch: 45	rab 558
Lab Sample ID: MB 570-4 Matrix: Water Analysis Batch: 455906 Analyte	55583/1-A				MDL Unit	D	P Pro	rep Typ epared	e: Total F	Recove tch: 45 ed [rab 558
Lab Sample ID: MB 570-4 Matrix: Water Analysis Batch: 455906 Analyte Lead	55583/1-A	sult Qualifier					P <u>Pr</u> 06/28	rep Typ epared 3/24 06:45	e: Total F Prep Ba Analyz 06/28/24 1	ecove tch: 45 ed 6:12	rab 5558 Dil F
Lab Sample ID: MB 570-4 Matrix: Water Analysis Batch: 455906 Analyte Lead Lab Sample ID: LCS 570-4	55583/1-A	sult Qualifier					P <u>Pr</u> 06/28 ot San	epared 3/24 06:45	e: Total F Prep Ba Analyz 06/28/24 1 Lab Cont	Recove tch: 45 ed 6:12	rabi 5558 Dil Fa mpl
Lab Sample ID: MB 570-4 Matrix: Water Analysis Batch: 455906 Analyte Lead Lab Sample ID: LCS 570-4 Matrix: Water	55583/1-A	sult Qualifier					P <u>Pr</u> 06/28 ot San	epared 3/24 06:45	e: Total F Prep Ba <u>Analyz</u> 06/28/24 1 Lab Cont e: Total F	Recove tch: 45 ed 6:12 trol Sar Recove	rabi 5558 Dil Fa mpl rabi
Lab Sample ID: MB 570-4 Matrix: Water Analysis Batch: 455906 Analyte Lead Lab Sample ID: LCS 570-4 Matrix: Water	55583/1-A	sult Qualifier					P <u>Pr</u> 06/28 ot San	epared 3/24 06:45	e: Total F Prep Ba Analyz 06/28/24 1 Lab Cont	Recove tch: 45 ed 6:12 trol Sar Recove	rabi 5558 Dil Fa mpl rabi
Method: 6010B - Metal Lab Sample ID: MB 570-4 Matrix: Water Analysis Batch: 455906 Analyte Lead Lab Sample ID: LCS 570-4 Matrix: Water Analysis Batch: 455906	55583/1-A	sult Qualifier		0.00			P - <u>Pr</u> - 06/28 -	rep Typ epared 3/24 06:45 hple ID: rep Typ	e: Total F Prep Ba <u>Analyz</u> 06/28/24 1 Lab Cont e: Total F Prep Ba %Rec	Recove tch: 45 ed 6:12 trol Sar Recove	rabl 5558 Dil Fa mpl rabl
Lab Sample ID: MB 570-4 Matrix: Water Analysis Batch: 455906 Analyte Lead Lab Sample ID: LCS 570-4 Matrix: Water Analysis Batch: 455906	55583/1-A	sult Qualifier	0.0500	0.00)527 mg/L		P - <u>Pr</u> - 06/28 -	epared 3/24 06:45	e: Total F Prep Ba <u>Analyz</u> 06/28/24 1 Lab Cont e: Total F Prep Ba	Recove tch: 45 ed 6:12 trol Sar Recove	rabi 5558 Dil Fa mpl rabi
Lab Sample ID: MB 570-4 Matrix: Water Analysis Batch: 455906 Analyte Lead Lab Sample ID: LCS 570-4 Matrix: Water Analysis Batch: 455906 Analyte	55583/1-A	sult Qualifier		0.00	D527 mg/L	Clien	P - <u>Pr</u> - 06/28 -	rep Typ epared 3/24 06:45 hple ID: rep Typ	e: Total F Prep Ba <u>Analyz</u> 06/28/24 1 Lab Cont e: Total F Prep Ba %Rec	Recove tch: 45 ed 6:12 trol Sar Recove	rabi 5558 Dil Fa mpl rabi
Lab Sample ID: MB 570-4 Matrix: Water Analysis Batch: 455906 Analyte Lead Lab Sample ID: LCS 570-4 Matrix: Water Analysis Batch: 455906 Analyte Lead	55583/1-A 	ND Qualifier	0.0500 Spike Added	0.00 LCS Result	LCS Qualifier	Clien Unit mg/L	P - Pr - 06/28 - 0	rep Typ epared 3/24 06:45 nple ID: rep Typ %Rec 106	e: Total F Prep Ba 06/28/24 1 Lab Com e: Total F Prep Ba %Rec Limits 80 - 120	tch: 45 ed [12] trol Sau trol Sau tch: 45	rabi 5558 Dil Fa mpl rabi 5558
Lab Sample ID: MB 570-4 Matrix: Water Analysis Batch: 455906 Analyte Lead Lab Sample ID: LCS 570-4 Matrix: Water Analysis Batch: 455906 Analyte Lead Lab Sample ID: LCSD 570	55583/1-A 	ND Qualifier	0.0500 Spike Added	0.00 LCS Result	LCS Qualifier	Clien Unit mg/L	P - <u>Pr</u> - 06/28 - D - D 	rep Typ epared 3/24 06:45 nple ID: rep Typ %Rec 106 D: Lab	e: Total F Prep Ba 06/28/24 1 Lab Cont e: Total F Prep Ba %Rec Limits 80 - 120 Control S	ed <u>for the second second</u> tends to the second seco	rab 5558 Dil Fi mpl rab 5558 Du
Lab Sample ID: MB 570-4 Matrix: Water Analysis Batch: 455906 Analyte Lead Lab Sample ID: LCS 570-4 Matrix: Water Analysis Batch: 455906 Analyte Lead Lab Sample ID: LCSD 570 Matrix: Water	55583/1-A 	ND Qualifier	0.0500 Spike Added	0.00 LCS Result	LCS Qualifier	Clien Unit mg/L	P - <u>Pr</u> - 06/28 - D - D 	rep Typ epared 3/24 06:45 nple ID: rep Typ %Rec 106 D: Lab	e: Total F Prep Ba 06/28/24 1 Lab Cont e: Total F Prep Ba %Rec Limits 80 - 120 Control S e: Total F	ed I 6:12 I trol San Sacove tch: 45 I Gample Sacove Sacove Sacove	rabi 5558 Dil Fi rabi 5558 Du rabi
Lab Sample ID: MB 570-4 Matrix: Water Analysis Batch: 455906 Analyte Lead Lab Sample ID: LCS 570-4 Matrix: Water Analysis Batch: 455906 Analyte Lead Lab Sample ID: LCSD 570 Matrix: Water	55583/1-A 	ND Qualifier	0.0500 Spike Added 0.500	0.00 LCS Result 0.5289	LCS Qualifier	Clien Unit mg/L	P - <u>Pr</u> - 06/28 - D - D 	rep Typ epared 3/24 06:45 nple ID: rep Typ %Rec 106 D: Lab	e: Total F Prep Ba 06/28/24 1 Lab Cont e: Total F Prep Ba %Rec Limits 80-120 Control S e: Total F Prep Ba	ed I 6:12 I trol San Sacove tch: 45 I Gample Sacove Sacove Sacove	rabl 5558 Dil Fa mpl rabl 5558 Du rabl 5558
Lab Sample ID: MB 570-4 Matrix: Water Analysis Batch: 455906 Analyte Lead Lab Sample ID: LCS 570-4 Matrix: Water Analysis Batch: 455906 Analyte Lead Lab Sample ID: LCSD 570 Matrix: Water Analysis Batch: 455906	55583/1-A 	ND Qualifier	0.0500 Spike Added 0.500 Spike	LCS Result 0.5289	LCS Qualifier	Clien Unit mg/L Client Sar	P - <u>Pr</u> - 06/28 - D 	rep Typ epared 3/24 06:45 nple ID: rep Typ %Rec 106 D: Lab (rep Typ	e: Total F Prep Ba 06/28/24 1 Lab Com e: Total F Prep Ba %Rec Limits 80 - 120 Control S e: Total F Prep Ba %Rec	ecove tch: 45 ed <u>f</u> find San ecove tch: 45 Sample Recove tch: 45	rabl 5558 Dil Fa mpl rabl 5558 Du rabl 5558
Lab Sample ID: MB 570-4 Matrix: Water Analysis Batch: 455906 Analyte Lead Lab Sample ID: LCS 570-4 Matrix: Water Analysis Batch: 455906 Analyte Lead Lab Sample ID: LCSD 570 Matrix: Water Analysis Batch: 455906 Analyte	55583/1-A 	ND Qualifier	O.0500 Spike Added O.500 Spike Added	LCS Result 0.5289 LCSD Result	LCS Qualifier	Clien Unit mg/L Client Sar Unit	P - <u>Pr</u> - 06/28 - D 	epared 3/24 06:45 nple ID: rep Typ %Rec 106 D: Lab 0 rep Typ %Rec	e: Total F Prep Ba <u>Analyz</u> 06/28/24 1 Lab Cont e: Total F Prep Ba %Rec Limits 80 - 120 Control S e: Total F Prep Ba %Rec Limits	ed 1 6:12 1 trol San Recove tch: 45 Sample Recove tch: 45	rabl 5558 Dil Fa mpl 5558 Du 5558 RF Lin
Lab Sample ID: MB 570-4 Matrix: Water Analysis Batch: 455906 Analyte Lead Lab Sample ID: LCS 570-4 Matrix: Water Analysis Batch: 455906 Analyte Lead Lab Sample ID: LCSD 570 Matrix: Water Analysis Batch: 455906 Analyte	55583/1-A 	ND Qualifier	0.0500 Spike Added 0.500 Spike	LCS Result 0.5289	LCS Qualifier	Clien Unit mg/L Client Sar	P - <u>Pr</u> - 06/28 - D 	rep Typ epared 3/24 06:45 nple ID: rep Typ %Rec 106 D: Lab (rep Typ	e: Total F Prep Ba 06/28/24 1 Lab Com e: Total F Prep Ba %Rec Limits 80 - 120 Control S e: Total F Prep Ba %Rec	ecove tch: 45 ed <u>f</u> find San ecove tch: 45 Sample Recove tch: 45	rabl 5558 Dil Fa mpl 5558 Du rabl 5558 RF Lin
Lab Sample ID: MB 570-4 Matrix: Water Analysis Batch: 455906 Analyte Lead Lab Sample ID: LCS 570-4 Matrix: Water Analysis Batch: 455906 Analyte Lead Lab Sample ID: LCSD 570 Matrix: Water Analysis Batch: 455906 Analyte Lead	55583/1-A Re 455583/2-A 0-455583/3-A	ND Qualifier	O.0500 Spike Added O.500 Spike Added	LCS Result 0.5289 LCSD Result	LCS Qualifier	Clien Unit mg/L Client Sar Unit	P - Pri - 06/28 - D - D - D - D - D - D 	epared 3/24 06:45 nple ID: rep Typ %Rec 106 D: Lab 0 rep Typ %Rec 106 D: Lab 0 rep Typ %Rec 104	e: Total F Prep Ba 06/28/24 1 Lab Com e: Total F Prep Ba %Rec Limits 80 - 120 Control S e: Total F Prep Ba %Rec Limits 80 - 120	ed 1 6:12 1 trol San ecove tch: 45 cample ecove tch: 45 RPD 2	rabl 5558 Dil Fi rabl 5558 Du rabl 5558 RF Lin
Lab Sample ID: MB 570-4 Matrix: Water Analysis Batch: 455906 Analyte Lead Lab Sample ID: LCS 570-4 Matrix: Water Analysis Batch: 455906 Analyte Lead Lab Sample ID: LCSD 570 Matrix: Water Analysis Batch: 455906 Analyte Lead Lab Sample ID: 570-18983	55583/1-A Re 455583/2-A 0-455583/3-A	ND Qualifier	O.0500 Spike Added O.500 Spike Added	LCS Result 0.5289 LCSD Result	LCS Qualifier	Clien Unit mg/L Client Sar Unit	P - Pri - 06/28 - D - D - D - D - D - C	epared 3/24 06:45 nple ID: rep Typ %Rec 106 D: Lab 0 rep Typ %Rec 104 lient Sat	e: Total F Prep Ba 06/28/24 1 Lab Cont e: Total F Prep Ba %Rec Limits 80 - 120 Control S e: Total F Prep Ba %Rec Limits 80 - 120 Solution S e: Total F Prep Ba %Rec Limits 80 - 120	ecove tch: 45 ed trol San ecove tch: 45 Gample ecove tch: 45 <u>RPD</u> 2 SP-1-00	rabl 5558 Dil Fi rabl 5558 Du rabl 5558 RF Lin
Lab Sample ID: MB 570-4 Matrix: Water Analysis Batch: 455906 Analyte Lead Lab Sample ID: LCS 570-4 Matrix: Water Analysis Batch: 455906 Analyte Lead Lab Sample ID: LCSD 570 Matrix: Water Analysis Batch: 455906 Analyte Lead Lab Sample ID: 570-18983 Matrix: Water	55583/1-A Re 455583/2-A 0-455583/3-A	ND Qualifier	O.0500 Spike Added O.500 Spike Added	LCS Result 0.5289 LCSD Result	LCS Qualifier	Clien Unit mg/L Client Sar Unit	P - Pri - 06/28 - D - D - D - D - D - C	epared 3/24 06:45 nple ID: rep Typ %Rec 106 D: Lab 0 rep Typ %Rec 104 lient Sat	e: Total F Prep Ba 06/28/24 1 Lab Cont e: Total F Prep Ba %Rec Limits 80 - 120 Control S e: Total F Prep Ba %Rec Limits 80 - 120 mple ID: S oe: Total	ed I 6:12 I trol San Ecove tch: 45 I Gample Ecove tch: 45 I Sample I RPD 2 SP-1-00 Recove	rabl 5558 Dil Fa mpl rabl 5558 Du rabl 5558 Lin 6252
Lab Sample ID: MB 570-4 Matrix: Water Analysis Batch: 455906 Analyte Lead Lab Sample ID: LCS 570-4 Matrix: Water Analysis Batch: 455906 Analyte Lead Lab Sample ID: LCSD 570 Matrix: Water Analysis Batch: 455906 Analyte Lead Lab Sample ID: 570-18983	55583/1-A Re 4555583/2-A 0-455583/3-A 84-1 MS	ND Qualifier	0.0500 Spike Added 0.500 Spike Added 0.500	0.00 LCS Result 0.5289 LCSD Result 0.5207	LCS Qualifier	Clien Unit mg/L Client Sar Unit	P - Pri - 06/28 - D - D - D - D - D - C	epared 3/24 06:45 nple ID: rep Typ %Rec 106 D: Lab 0 rep Typ %Rec 104 lient Sat	e: Total F Prep Ba 06/28/24 1 Lab Cont e: Total F Prep Ba %Rec Limits 80 - 120 Control S e: Total F Prep Ba %Rec Limits 80 - 120 mple ID: 5 ce: Total Prep Ba	ed I 6:12 I trol San Ecove tch: 45 I Gample Ecove tch: 45 I Sample I RPD 2 SP-1-00 Recove	rabl 5558 Dil Fa rabl 5558 Duj rabl 5558 RP Lim
Lab Sample ID: MB 570-4 Matrix: Water Analysis Batch: 455906 Analyte Lead Lab Sample ID: LCS 570-4 Matrix: Water Analysis Batch: 455906 Analyte Lead Lab Sample ID: LCSD 570 Matrix: Water Analysis Batch: 455906 Analyte Lead Lab Sample ID: 570-18983 Matrix: Water Analysis Batch: 455906	555583/1-A Re 4555583/2-A 0-4555583/3-A 34-1 MS Sample	Sample	0.0500 Spike Added 0.500 Spike Added 0.500 Spike	0.00 LCS Result 0.5289 LCSD Result 0.5207	LCS Qualifier C LCSD Qualifier	Clien Unit mg/L Client Sar Unit mg/L	P - Pr - 06/28 - D - D - D - D - C F	rep Typ epared 3/24 06:45 nple ID: rep Typ %Rec 106 D: Lab 0 rep Typ %Rec 106 D: Lab 0 rep Typ %Rec 104 Silent San Prep Typ	e: Total F Prep Ba 06/28/24 1 Lab Com e: Total F Prep Ba %Rec Limits 80 - 120 Control S e: Total F Prep Ba %Rec Limits 80 - 120 mple ID: 3 oe: Total Prep Ba %Rec	ed I 6:12 I trol San Ecove tch: 45 I Gample Ecove tch: 45 I Sample I RPD 2 SP-1-00 Recove	rable 5558 Dil Fa mple rable 5558 Dup rable 5558 RP Lim 2 6252 erab
Lab Sample ID: MB 570-4 Matrix: Water Analysis Batch: 455906 Analyte Lead Lab Sample ID: LCS 570-4 Matrix: Water Analysis Batch: 455906 Analyte Lead Lab Sample ID: LCSD 570 Matrix: Water Analysis Batch: 455906 Analyte Lead Lab Sample ID: 570-18983 Matrix: Water	555583/1-A Re 4555583/2-A 0-4555583/3-A 34-1 MS Sample	ND Qualifier	0.0500 Spike Added 0.500 Spike Added 0.500	0.00 LCS Result 0.5289 LCSD Result 0.5207	LCS Qualifier C LCSD Qualifier MS Qualifier	Clien Unit mg/L Client Sar Unit	P - Pri - 06/28 - D - D - D - D - D - C	epared 3/24 06:45 nple ID: rep Typ %Rec 106 D: Lab 0 rep Typ %Rec 104 lient Sat	e: Total F Prep Ba 06/28/24 1 Lab Cont e: Total F Prep Ba %Rec Limits 80 - 120 Control S e: Total F Prep Ba %Rec Limits 80 - 120 mple ID: 5 ce: Total Prep Ba	ed I 6:12 I trol San Ecove tch: 45 I Gample Ecove tch: 45 I Sample I RPD 2 SP-1-00 Recove	rabl 5558 Dil Fa rabl 5558 Duj rabl 5558 RP Lim 6252

Eurofins Calscience

Method: 6010B - Metals (ICP) (Cc ntinued)

Lab Sample ID: 570-189834 Matrix: Water	-1 MSD								mple ID: 3 pe: Total	Recove	erable
Analysis Batch: 455906									Prep Ba	atch: 4	55583
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Lead	ND		0.500	0.5016		ma/L		100	84 - 120	2	7

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 570-455624 Matrix: Water Analysis Batch: 455745		МВ						Clie	ent Samj	ole ID: Me Prep Typ Prep Ba	e: Tot	al/NA
Analyte		Qualifier		RL	MDL	Unit		D P	repared	Analyz	ed	Dil Fac
Mercury	ND		0.000	200 0.0	00124	mg/L		06/2	8/24 08:00	06/28/24 1	5:04	1
Lab Sample ID: LCS 570-455624 Matrix: Water Analysis Batch: 455745	4/2-A		Spike		S LCS		Clie	ent Sai	mple ID:	Lab Con Prep Typ Prep Ba %Rec	e: Tot	al/NA
Analyte			Added	-	t Qua		Unit	D	%Rec	Limits		
Mercury			0.00800	0.007750			mg/L	<u>_</u>	97	80 - 120		
Lab Sample ID: LCSD 570-4556 Matrix: Water Analysis Batch: 455745	24/3-A					C	Client Sa	ample	ID: Lab	Control S Prep Typ Prep Ba	e: Tot	al/NA
			Spike	LCSI	LCS	D				%Rec		RPD
Analyte			Added	Resu	t Qua	lifier	Unit	D	%Rec	Limits	RPD	Limit
Mercury			0.00800	0.007858	3		mg/L		98	80 - 120	1	10

GC/MS Semi VOA

Prep Batch: 456194

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-189834-1	SP-1-062524	Total/NA	Water	3510C	
570-189834-2	SP-2-062524	Total/NA	Water	3510C	
570-189834-3	SP-4-062524	Total/NA	Water	3510C	
570-189834-4	SP-5-062524	Total/NA	Water	3510C	
570-189834-5	Blind Sample-062524	Total/NA	Water	3510C	
570-189834-6	OBOD Field Blank- 062524	Total/NA	Water	3510C	
570-189834-7	IRP-52-062524	Total/NA	Water	3510C	
570-189834-8	IRP-52 Field Blank- 062524	Total/NA	Water	3510C	
570-189834-9	Equipment Blank- 062524	Total/NA	Water	3510C	
MB 570-456194/1-A	Method Blank	Total/NA	Water	3510C	
LCS 570-456194/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 570-456194/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	

Analysis Batch: 457377

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-189834-1	SP-1-062524	Total/NA	Water	8270C SIM	456194
570-189834-2	SP-2-062524	Total/NA	Water	8270C SIM	456194
570-189834-7	IRP-52-062524	Total/NA	Water	8270C SIM	456194
570-189834-8	IRP-52 Field Blank- 062524	Total/NA	Water	8270C SIM	456194
570-189834-9	Equipment Blank- 062524	Total/NA	Water	8270C SIM	456194
MB 570-456194/1-A	Method Blank	Total/NA	Water	8270C SIM	456194
LCSD 570-456194/3-A	Lab Control Sample Dup	Total/NA	Water	8270C SIM	456194

Analysis Batch: 459068

Lab Sample ID 570-189834-3	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-169634-3	SP-4-062524	Total/NA	Water	8270C SIM	456194
570-189834-4	SP-5-062524	Total/NA	Water	8270C SIM	456194
570-189834-5	Blind Sample-062524	Total/NA	Water	8270C SIM	456194
570-189834-6	OBOD Field Blank- 062524	Total/NA	Water	8270C SIM	456194
LCS 570-456194/2-A	Lab Control Sample	Total/NA	Water	8270C SIM	456194

HPLC/IC

Prep Batch: 455925

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-189834-1	SP-1-062524	Total/NA	Water	8330	
570-189834-2	SP-2-062524	Total/NA	Water	8330	
570-189834-3	SP-4-062524	Total/NA	Water	8330	
570-189834-4	SP-5-062524	Total/NA	Water	8330	
570-189834-5	Blind Sample-062524	Total/NA	Water	8330	
570-189834-6	OBOD Field Blank- 062524	Total/NA	Water	8330	
570-189834-7	IRP-52-062524	Total/NA	Water	8330	
570-189834-8	IRP-52 Field Blank- 062524	Total/NA	Water	8330	
570-189834-9	Equipment Blank- 062524	Total/NA	Water	8330	
MB 570-455925/1-A	Method Blank	Total/NA	Water	8330	
LCS 570-455925/2-A	Lab Control Sample	Total/NA	Water	8330	
LCSD 570-455925/3-A	Lab Control Sample Dup	Total/NA	Water	8330	
Analysis Batch: 4573	95				

Lab Sample IDClient Sample IDPrep TypeMatrixMethodPrep Batch570-189834-1SP-1-062524Total/NAWater8330455925

Analysis Batch: 457395 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-189834-2	SP-2-062524	Total/NA	Water	8330	455925
570-189834-3	SP-4-062524	Total/NA	Water	8330	455925
570-189834-4	SP-5-062524	Total/NA	Water	8330	455925
570-189834-5	Blind Sample-062524	Total/NA	Water	8330	455925
570-189834-6	OBOD Field Blank- 062524	Total/NA	Water	8330	455925
570-189834-7	IRP-52-062524	Total/NA	Water	8330	455925
570-189834-8	IRP-52 Field Blank- 062524	Total/NA	Water	8330	455925
570-189834-9	Equipment Blank- 062524	Total/NA	Water	8330	455925
MB 570-455925/1-A	Method Blank	Total/NA	Water	8330	455925
LCS 570-455925/2-A	Lab Control Sample	Total/NA	Water	8330	455925
LCSD 570-455925/3-A	Lab Control Sample Dup	Total/NA	Water	8330	455925

Metals

Prep Batch: 455583

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-189834-1	SP-1-062524	Total Recoverable	Water	3005A	
570-189834-2	SP-2-062524	Total Recoverable	Water	3005A	
570-189834-3	SP-4-062524	Total Recoverable	Water	3005A	
570-189834-4	SP-5-062524	Total Recoverable	Water	3005A	
570-189834-5	Blind Sample-062524	Total Recoverable	Water	3005A	
570-189834-6	OBOD Field Blank- 062524	Total Recoverable	Water	3005A	
570-189834-7	IRP-52-062524	Total Recoverable	Water	3005A	
570-189834-8	IRP-52 Field Blank- 062524	Total Recoverable	Water	3005A	
570-189834-9	Equipment Blank- 062524	Total Recoverable	Water	3005A	
MB 570-455583/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 570-455583/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
LCSD 570-455583/3-A	Lab Control Sample Dup	Total Recoverable	Water	3005A	
570-189834-1 MS	SP-1-062524	Total Recoverable	Water	3005A	
570-189834-1 MSD	SP-1-062524	Total Recoverable	Water	3005A	

Prep Batch: 455624

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-189834-1	SP-1-062524	Total/NA	Water	7470A	
570-189834-2	SP-2-062524	Total/NA	Water	7470A	
570-189834-3	SP-4-062524	Total/NA	Water	7470A	
570-189834-4	SP-5-062524	Total/NA	Water	7470A	
570-189834-5	Blind Sample-062524	Total/NA	Water	7470A	
570-189834-6	OBOD Field Blank- 062524	Total/NA	Water	7470A	
570-189834-7	IRP-52-062524	Total/NA	Water	7470A	
570-189834-8	IRP-52 Field Blank- 062524	Total/NA	Water	7470A	
570-189834-9	Equipment Blank- 062524	Total/NA	Water	7470A	
MB 570-455624/1-A	Method Blank	Total/NA	Water	7470A	
LCS 570-455624/2-A	Lab Control Sample	Total/NA	Water	7470A	
LCSD 570-455624/3-A	Lab Control Sample Dup	Total/NA	Water	7470A	

Analysis Batch: 455745

Lab Sample ID 570-189834-1	Client Sample ID SP-1-062524	Prep Type Total/NA	Matrix Water	Method 7470A	Prep Batch 455624
570-189834-2	SP-2-062524	Total/NA	Water	7470A	455624
570-189834-3	SP-4-062524	Total/NA	Water	7470A	455624

Metals (Continued)

Analysis Batch: 455745 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-189834-4	SP-5-062524	Total/NA	Water	7470A	455624
570-189834-5	Blind Sample-062524	Total/NA	Water	7470A	455624
570-189834-6	OBOD Field Blank- 062524	Total/NA	Water	7470A	455624
570-189834-7	IRP-52-062524	Total/NA	Water	7470A	455624
570-189834-8	IRP-52 Field Blank- 062524	Total/NA	Water	7470A	455624
570-189834-9	Equipment Blank- 062524	Total/NA	Water	7470A	455624
MB 570-455624/1-A	Method Blank	Total/NA	Water	7470A	455624
LCS 570-455624/2-A	Lab Control Sample	Total/NA	Water	7470A	455624
LCSD 570-455624/3-A	Lab Control Sample Dup	Total/NA	Water	7470A	455624

Analysis Batch: 455906

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
570-189834-1	SP-1-062524	Total Recoverable	Water	6010B	455583
570-189834-2	SP-2-062524	Total Recoverable	Water	6010B	455583
570-189834-3	SP-4-062524	Total Recoverable	Water	6010B	455583
570-189834-4	SP-5-062524	Total Recoverable	Water	6010B	455583
570-189834-5	Blind Sample-062524	Total Recoverable	Water	6010B	455583
570-189834-6	OBOD Field Blank- 062524	Total Recoverable	Water	6010B	455583
570-189834-7	IRP-52-062524	Total Recoverable	Water	6010B	455583
570-189834-8	IRP-52 Field Blank- 062524	Total Recoverable	Water	6010B	455583
570-189834-9	Equipment Blank- 062524	Total Recoverable	Water	6010B	455583
MB 570-455583/1-A	Method Blank	Total Recoverable	Water	6010B	455583
LCS 570-455583/2-A	Lab Control Sample	Total Recoverable	Water	6010B	455583
LCSD 570-455583/3-A	Lab Control Sample Dup	Total Recoverable	Water	6010B	455583
570-189834-1 MS	SP-1-062524	Total Recoverable	Water	6010B	455583
570-189834-1 MSD	SP-1-062524	Total Recoverable	Water	6010B	455583

Client Sample ID: SP-1-062524 Date Collected: 06/25/24 13:34 Date Received: 06/27/24 09:45

Lab Sample ID: 570-189834-1 Matrix: Water

Lab Sample ID: 570-189834-2

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C	_		995.4 mL	2 mL	456194	07/01/24 05:28	H1SH	EET CAL 4
Total/NA	Analysis	8270C SIM		1	1 mL	1 mL	457377	07/03/24 19:12	ULLI	EET CAL 4
	Instrumer	nt ID: GCMSEEE								
Total/NA	Prep	8330			770 mL	12.0 mL	455925	06/28/24 20:54	UM1W	EET CAL 4
Total/NA	Analysis	8330		1	1 mL	1 mL	457395	07/03/24 23:19	URMH	EET CAL 4
	Instrumer	nt ID: HPLC7								
Total Recoverable	Prep	3005A			50 mL	50 mL	455583	06/28/24 06:45	JP8N	EET CAL 4
Total Recoverable	Analysis	6010B		1			455906	06/28/24 16:21	UFLE	EET CAL 4
	Instrumer	nt ID: ICP11								
Total/NA	Prep	7470A			25 mL	50 mL	455624	06/28/24 08:00	VCN7	EET CAL 4
Total/NA	Analysis	7470A		1			455745	06/28/24 15:44	RL6Q	EET CAL 4
	Instrumen	nt ID: HG9								

Client Sample ID: SP-2-062524

Date Collected: 06/25/24 13:22 Date Received: 06/27/24 09:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			1012.4 mL	2 mL	456194	07/01/24 05:28	H1SH	EET CAL 4
Total/NA	Analysis	8270C SIM		1	1 mL	1 mL	457377	07/03/24 19:33	ULLI	EET CAL 4
	Instrumer	nt ID: GCMSEEE								
Total/NA	Prep	8330			770 mL	11.2 mL	455925	06/28/24 20:54	UM1W	EET CAL 4
Total/NA	Analysis	8330		1	1 mL	1 mL	457395	07/03/24 23:42	URMH	EET CAL 4
	Instrumer	nt ID: HPLC7								
Total Recoverable	Prep	3005A			50 mL	50 mL	455583	06/28/24 06:45	JP8N	EET CAL 4
Total Recoverable	Analysis	6010B		1			455906	06/28/24 16:42	UFLE	EET CAL 4
	Instrumer	nt ID: ICP11								
Total/NA	Prep	7470A			25 mL	50 mL	455624	06/28/24 08:00	VCN7	EET CAL 4
Total/NA	Analysis	7470A		1			455745	06/28/24 15:46	RL6Q	EET CAL 4
	Instrumen	nt ID: HG9								

Client Sample ID: SP-4-062524 Date Collected: 06/25/24 13:10 Date Received: 06/27/24 09:45

Lab Sample ID: 570-189834-3 Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			1014.4 mL	2 mL	456194	07/01/24 05:28	H1SH	EET CAL 4
Total/NA	Analysis	8270C SIM		1	1 mL	1 mL	459068	07/11/24 01:12	PQS1	EET CAL 4
	Instrumer	nt ID: GCMSJJJ								
Total/NA	Prep	8330			770 mL	11.2 mL	455925	06/28/24 20:54	UM1W	EET CAL 4
Total/NA	Analysis	8330		1	1 mL	1 mL	457395	07/04/24 00:05	URMH	EET CAL 4
	Instrumer	nt ID: HPLC7								
Total Recoverable	Prep	3005A			50 mL	50 mL	455583	06/28/24 06:45	JP8N	EET CAL 4
Total Recoverable	Analysis Instrumer	6010B nt ID: ICP11		1			455906	06/28/24 16:44	UFLE	EET CAL 4

Eurofins Calscience

Client Sample ID: SP-4-062524 Date Collected: 06/25/24 13:10 Date Received: 06/27/24 09:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	7470A			25 mL	50 mL	455624	06/28/24 08:00	VCN7	EET CAL 4
Total/NA	Analysis	7470A		1			455745	06/28/24 15:48	RL6Q	EET CAL 4
Total/NA		7470A t II: : HG9		1			455745	06/28/24 15:48	RL60	Q

Client Sample ID: SP-5-062524 Date Collected: 06/25/24 12:57 Date Received: 06/27/24 09:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			1011 mL	2 mL	456194	07/01/24 05:28	H1SH	EET CAL 4
Total/NA	Analysis	8270C SIM		1	1 mL	1 mL	459068	07/11/24 01:34	PQS1	EET CAL 4
	Instrumer	nt ID: GCMSJJJ								
Total/NA	Prep	8330			770 mL	11.8 mL	455925	06/28/24 20:54	UM1W	EET CAL 4
Total/NA	Analysis	8330		1	1 mL	1 mL	457395	07/04/24 00:52	URMH	EET CAL 4
	Instrumer	nt ID: HPLC7								
Total Recoverable	Prep	3005A			50 mL	50 mL	455583	06/28/24 06:45	JP8N	EET CAL 4
Total Recoverable	Analysis	6010B		1			455906	06/28/24 16:47	UFLE	EET CAL 4
	Instrumer	nt ID: ICP11								
Total/NA	Prep	7470A			25 mL	50 mL	455624	06/28/24 08:00	VCN7	EET CAL 4
Total/NA	Analysis	7470A		1			455745	06/28/24 15:50	RL6Q	EET CAL 4
	Instrumen	t ID: HG9								

Client Sample ID: Blind Sample-062524 Date Collected: 06/25/24 12:30 Date Received: 06/27/24 09:45

Lab Sample ID: 570-189834-5 Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			1019.7 mL	2 mL	456194	07/01/24 05:28	H1SH	EET CAL 4
Total/NA	Analysis	8270C SIM		1	1 mL	1 mL	459068	07/11/24 01:56	PQS1	EET CAL 4
	Instrumer	t ID: GCMSJJJ								
Total/NA	Prep	8330			770 mL	11.2 mL	455925	06/28/24 20:54	UM1W	EET CAL 4
Total/NA	Analysis	8330		1	1 mL	1 mL	457395	07/04/24 01:16	URMH	EET CAL 4
	Instrumer	t ID: HPLC7								
Total Recoverable	Prep	3005A			50 mL	50 mL	455583	06/28/24 06:45	JP8N	EET CAL 4
Total Recoverable	Analysis	6010B		1			455906	06/28/24 16:49	UFLE	EET CAL 4
	Instrumer	t ID: ICP11								
Total/NA	Prep	7470A			25 mL	50 mL	455624	06/28/24 08:00	VCN7	EET CAL 4
Total/NA	Analysis	7470A		1			455745	06/28/24 15:52	RL6Q	EET CAL 4
	Instrumer	t ID: HG9								

Job ID: 570-189834-1

Lab Sample ID: 570-189834-3 Matrix: Water

Lab Sample	ID: 570-189834-4
	Matrix: Water

Client Sample ID: OBOD Field Blank- 062524 Date Collected: 06/25/24 12:51 Date Received: 06/27/24 09:45

Lab Sample ID: 570-189834-6 Matrix: Water

Lab Sample ID: 570-189834-7

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			1038.5 mL	2 mL	456194	07/01/24 05:28	H1SH	EET CAL 4
Total/NA	Analysis	8270C SIM		1	1 mL	1 mL	459068	07/11/24 02:18	PQS1	EET CAL 4
	Instrumer	nt ID: GCMSJJJ								
Total/NA	Prep	8330			770 mL	11.4 mL	455925	06/28/24 20:54	UM1W	EET CAL 4
Total/NA	Analysis	8330		1	1 mL	1 mL	457395	07/04/24 01:39	URMH	EET CAL 4
	Instrumer	nt ID: HPLC7								
Total Recoverable	Prep	3005A			50 mL	50 mL	455583	06/28/24 06:45	JP8N	EET CAL 4
Total Recoverable	Analysis	6010B		1			455906	06/28/24 16:52	UFLE	EET CAL 4
	Instrumer	nt ID: ICP11								
Total/NA	Prep	7470A			25 mL	50 mL	455624	06/28/24 08:00	VCN7	EET CAL 4
Total/NA	Analysis	7470A		1			455745	06/28/24 15:54	RL6Q	EET CAL 4
	Instrumen	t ID: HG9								

Client Sample ID: IRP-52-062524 Date Collected: 06/25/24 15:52 Date Received: 06/27/24 09:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			1013 mL	2 mL	456194	07/01/24 05:28	H1SH	EET CAL 4
Total/NA	Analysis	8270C SIM		1	1 mL	1 mL	457377	07/03/24 21:20	ULLI	EET CAL 4
	Instrumen	t ID: GCMSEEE								
Total/NA	Prep	8330			770 mL	11.4 mL	455925	06/28/24 20:54	UM1W	EET CAL 4
Total/NA	Analysis	8330		1	1 mL	1 mL	457395	07/04/24 02:02	URMH	EET CAL 4
	Instrumen	t ID: HPLC7								
Total Recoverable	Prep	3005A			50 mL	50 mL	455583	06/28/24 06:45	JP8N	EET CAL 4
Total Recoverable	Analysis	6010B		1			455906	06/28/24 16:54	UFLE	EET CAL 4
	Instrumen	t ID: ICP11								
Total/NA	Prep	7470A			25 mL	50 mL	455624	06/28/24 08:00	VCN7	EET CAL 4
Total/NA	Analysis	7470A		1			455745	06/28/24 15:56	RL6Q	EET CAL 4

Client Sample ID: IRP-52 Field Blank- 062524 Date Collected: 06/25/24 14:12 Date Received: 06/27/24 09:45

Lab Sample ID: 570-189834-8 Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			1035.9 mL	2 mL	456194	07/01/24 05:28	H1SH	EET CAL 4
Total/NA	Analysis	8270C SIM		1	1 mL	1 mL	457377	07/03/24 21:41	ULLI	EET CAL 4
	Instrumer	t ID: GCMSEEE								
Total/NA	Prep	8330			770 mL	11.9 mL	455925	06/28/24 20:54	UM1W	EET CAL 4
Total/NA	Analysis	8330		1	1 mL	1 mL	457395	07/04/24 02:26	URMH	EET CAL 4
	Instrumer	nt ID: HPLC7								
Total Recoverable	Prep	3005A			50 mL	50 mL	455583	06/28/24 06:45	JP8N	EET CAL 4
Total Recoverable	Analysis	6010B		1			455906	06/28/24 16:56	UFLE	EET CAL 4
	Instrumer	nt ID: ICP11								

Eurofins Calscience

Matrix: Water

Client Sample ID: IRP-52 Field Blank- 062524 Date Collected: 06/25/24 14:12 Date Received: 06/27/24 09:45

Ргер Туре	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	7470A			25 mL	50 mL	455624	06/28/24 08:00	VCN7	EET CAL 4
Total/NA	Analysis	7470A		1			455745	06/28/24 15:58	RL6Q	EET CAL 4
	Instrumen	tIC: HG9								

Client Sample ID: Equipment Blank- 062524 Date Collected: 06/25/24 09:45 Date Received: 06/27/24 09:45

Lab Sample ID: 570-189834-9 Matrix: Water

Lab Sample ID: 570-189834-8

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C		·	1049.2 mL	2 mL	456194	07/01/24 05:28	H1SH	EET CAL 4
Total/NA	Analysis	8270C SIM		1	1 mL	1 mL	457377	07/03/24 22:03	ULLI	EET CAL 4
	Instrumen	t ID: GCMSEEE								
Total/NA	Prep	8330			770 mL	11.6 mL	455925	06/28/24 20:54	UM1W	EET CAL 4
Total/NA	Analysis	8330		1	1 mL	1 mL	457395	07/04/24 02:49	URMH	EET CAL 4
	Instrumen	t ID: HPLC7								
Total Recoverable	Prep	3005A			50 mL	50 mL	455583	06/28/24 06:45	JP8N	EET CAL 4
Total Recoverable	Analysis	6010B		1			455906	06/28/24 16:59	UFLE	EET CAL 4
	Instrumen	t ID: ICP11								
Total/NA	Prep	7470A			25 mL	50 mL	455624	06/28/24 08:00	VCN7	EET CAL 4
Total/NA	Analysis	7470A		1			455745	06/28/24 16:00	RL6Q	EET CAL 4
	Instrumen	t ID: HG9								

Laboratory References:

EET CAL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

Accreditation/Certification Summary

Client: EA Engineering, Science, and Technology Project/Site: NAVFAC Guam Compliance

Laboratory: Eurofins Calscience Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progra	ım	Identification Number	Expiration Date
California	State		3082	07-31-24
0,1	are included in this report or which the agency does		ot certified by California State 3082.	This list
Analysis Method	Prep Method	Matrix	Analyte	
8330	8330	Water	RDX	

Method Summary

Client: EA Engineering, Science, and Technology Project/Site: NAVFAC Guam Compliance

Method	Method Description	Protocol	Laboratory
8270C SIM	Semivolatile Organic Compounds (GC/MS SIM)	SW846	EET CAL 4
8330	Nitroaromatics and Nitramines (HPLC)	SW846	EET CAL 4
6010B	Metals (ICP)	SW846	EET CAL 4
7470A	Mercury (CVAA)	SW846	EET CAL 4
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	EET CAL 4
3510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	EET CAL 4
7470A	Preparation, Mercury	SW846	EET CAL 4
8330	Aqueous Salting Out Extraction (Explosives)	SW846	EET CAL 4

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CAL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

Sample Summary

Client: EA Engineering, Science, and Technology Project/Site: NAVFAC Guam Compliance

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
570-189834-1	SP-1-062524	Water	06/25/24 13:34	06/27/24 09:45
570-189834-2	SP-2-062524	Water	06/25/24 13:22	06/27/24 09:45
570-189834-3	SP-4-062524	Water	06/25/24 13:10	06/27/24 09:45
570-189834-4	SP-5-062524	Water	06/25/24 12:57	06/27/24 09:45
570-189834-5	Blind Sample-062524	Water	06/25/24 12:30	06/27/24 09:45
570-189834-6	OBOD Field Blank- 062524	Water	06/25/24 12:51	06/27/24 09:45
570-189834-7	IRP-52-062524	Water	06/25/24 15:52	06/27/24 09:45
570-189834-8	IRP-52 Field Blank- 062524	Water	06/25/24 14:12	06/27/24 09:45
570-189834-9	Equipment Blank- 062524	Water	06/25/24 09:45	06/27/24 09:45

SUNDANCE-EA	
ASSOCIATES II	

CHAIN OF CUSTODY

Eurofins Calscience

Address: 2841 Dow Avenue, Tustin, CA 92780

Laboratory:

570-189834 Chain of Custody

Loc: 570 189834

Page Lab Job #: 1 of 1

-	ASSUCIATEST			(714) 895-54						-							E		ID	906	2 - 0	DB/C	סכ	
	Client / Departing Information		POC:	Carla Hollow			DET.	Eurofin	sUS.	com>					,									
Company	Client / Reporting Information		-		Project In	formation									-	Ana	alytic	al Inf	orma	tion	-	1 7	Matrix	Codes
company	Sundance-EA Associates II		Project Na	ame	NAVFAC	Guam	Com	plianc	æ				8270C								-	1/		1
Address	1001 Army Drive, Suite 203		Street										SW 827									X		2 ×
City	State	Zip	City					State		1.1			S-					1.11			/			
Barriga	da Guam 969	13						Guam					alate								V			
Project Co	Brenda Nuding		Project # ELIN D062 - OB/OD									phthalate		•	8330				1	1				
Phone #	808-256-8268		Email bnuding@eaest.com; pacificchem@eaest.com cperez@sundance-inc.net; hindalecio@eaest.com								hexyl)	6020	SW 7470A	- SW						1	WQ-V	Vater Quality		
Samplers	's Name H. Indalecio / R. Teodosio / J.	San Nicolas	Purchase	Order #	NA80-041	-PO7 (per	nding	PO și	gnat	ure)			bis(2-ethylhexyl)	SW 60	1.1	(Explosives)			1			-	GW - C	Ground Water
1			Collection				N	umber	of pr	eserve	d Bott	les	is(2		Ĕ	blo		1			-	~		1.1.
Lab Sample ID	Sample ID / Field Point / Point of Collection	Guam Collection Date*	Time (Military Time)	Sampled by	Matrix	# of bottles	NONE	HNO3			·		DEHP, b	Lead (Pb)	Mercury (Hg)	RDX (Ex	1	/					-	Notes
	SP-1 - 062524	25-Jun-2024	1334	RT	GW	4	3	1					X	X	X	X	-							
2	SP-2 - 062524	25-Jun-2024	1322	н	GW	4	3	1					x	X	X	X						1	- 7-Da	ay Holding Time
3	SP-4 - 062524	25-Jun-2024	1310	н	GW	4	3	1		1			x	X	X	X		· .						
4	SP-5 - 062524	25-Jun-2024	1257	н	GW	4	3	1					X	X	X	X		•	-					
5	Blind Sample - 062524	25-Jun-2024	1230	н	GW	4	3	1					X	X	X	X	· r				42			
6	OBOD Field Blank - 062524	25-Jun-2024	1251	н	WQ	4	3	. 1					X	X	X	X						7		
7	IRP-52 - 062524	25-Jun-2024	1552	HI	GW	4	3	1					X	X	X	X							,	
Z	IRP-52 Field Blank = 062524	25-Jun-2024	1412	JSN	WQ	4	3	1				_	X	X	X	X								
9	Equipment Blank - 062524	25-Jun-2024	0945	HI	WQ	4	3	1					X	X	X	X								
	Turnaround Time (Business days)					ata Deliv		F		on							C	omm	ents	/ Rei	narks	1		
	Standard TAT as per co	ontract						Repo EDD	rt	-				7-Da	ıy H	T unt	til ex	trac	tion	for S	SW827	0C & S	W8330	
				locumented belo									,	1	_				_					
keep in m	ote that the Guam sample collection and for sample hold times. To sample																							
	as the cooler is sealed.	Time:	Received By:	CA		Date Time:	_	_	Relie	quished	By:	-		,	Date	Time:			Recei	ived By			Date Tir	ne:
++	- RRRE		APlinta	6 1	working C	5104	5		A	Stat.		0	1	61	121	5								
		June 2024 @ 1800		w lim	m 2	6 Tun . Date Time:	n	4	$_2A$	terry	new	King	an	2	S J	me 2	22	4	a	Fed	-			1.0.000
Relinquishe	I by: Date Fedt		Received By:	2		Date Time:	7/1	y	Relir	quished	By:				Date	Time:			Recei	ived By				
3	, ea 🗣		1	\sim	E		09	45	4										4					
Relinquished	f by:	Date Time:		Received By:						Custody	Seal #		On Ice				Sc	IY	. /		2.6/2	7.7		Temp. 4. 4/4-5
5		ļ		5		Page	e 31	of 33	6	_		_	Labels	Match	COC?	Y/N		3.	1/3	3. Z	3	.8/3	-1	17/2/20/24 4·21·41 PM
	•						- V		N										/					7.21.41 F 1VI

Client: EA Engineering, Science, and Technology

Login Number: 189834 List Number: 1 Creator: Aguilera, Ernan

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 570-189834-1

List Source: Eurofins Calscience

APPENDIX G

DUMPStat Statistical Analysis

Summary Statistics and Intermediate Computations for Combined Shewhart-CUSUM Control Charts

Constituent	Units	Well	N(back)	N(mon)	N(tot)	Mean	SD	R(i-1)	R(i)	S(i-1)	S(i)	Limit	Туре	
Di(2-ethylhexyl)phthalate	ug/L	IRP-52	4	20	24			10.0000	4.9000			33.6317	poisson	**
Lead	ug/L	IRP-52	4	19	23			1.0000	50.0000			8.2396	poisson	**
Mercury	ug/L	IRP-52	4	19	23	0.1455	0.1082	0.2000	0.2000	0.1455	0.1455	0.6325	normal	
RDX	ug/L	IRP-52	4	19	23			1.1000	1.1000			4.3693	poisson	**
Di(2-ethylhexyl)phthalate	ug/L	SP-1	4	19	23			10.0000	5.0000			34.9121	poisson	**
Lead	ug/L	SP-1	4	19	23			1.0000	50.0000			8.2396	poisson	**
Mercury	ug/L	SP-1	4	19	23	0.0929	0.0507	0.2000	0.2000	0.0929	0.0929	0.3212	normal	
RDX	uğ/L	SP-1	4	20	24			1.1500	1.2000			4.3693	poisson	**
Di(2-ethylhexyl)phthalate	ug/L	SP-2	4	19	23			9.8500	4.9000			34.9121	poisson	**
Lead	ug/L	SP-2	4	19	23			1.0000	50.0000			8.2396	poisson	**
Mercury	ug/L	SP-2	4	19	23	0.1051	0.0753	0.2000	0.2000	0.1051	0.1051	0.4438	normal	
RDX	ug/L	SP-2	4	19	23			1.2000	1.1000			4.3693	poisson	**
Di(2-ethylhexyl)phthalate	ug/L	SP-4	4	19	23			9.8000	4.9000			34.9121	poisson	**
Lead	ug/L	SP-4	4	19	23			1.0000	50.0000			8.2396	poisson	**
Mercury	ug/L	SP-4	4	19	23	0.0934	0.0517	0.2000	0.2000	0.0934	0.0934	0.3262	normal	
RDX	ug/L	SP-4	4	20	24			1.1000	1.1000			4.3693	poisson	**
Di(2-ethylhexyl)phthalate	ug/L	SP-5	4	19	23			9.8000	4.9000			33.6317	poisson	**
Lead	ug/L	SP-5	4	19	23			1.0000	50.0000			8.2396	poisson	**
Mercury	ug/L	SP-5	4	19	23	0.0874	0.0397	0.2000	0.2000	0.0874	0.0874	0.2662	normal	
RDX	ug/L	SP-5	4	19	23			1.1000	1.2000			4.3693	poisson	**

N(back) and N(mon) = Non-outlier measurements in the background and monitoring periods.

N(tot) = All independent measurements for that constituent and well.

For transformed data, mean and SD in transformed units and control limit in original units.

* - Insufficient Data.

** - Detection Frequency < 25%.

*** - Zero Variance.

**** - Calculated limit raised to Manual Reporting Limit.

	1		-							
Constituent	Units	Well	Date	Background	Result		Outlier	CUSUM	Adjusted	
Di(2-ethylhexyl)phthalate	ug/L	IRP-52	06/26/2014	yes	20.0000	ND			21.0000	***
Di(2-ethylhexyl)phthalate	ug/L	IRP-52	09/04/2014	yes	23.0000	ND			21.0000	***
Di(2-ethylhexyl)phthalate	ug/L	IRP-52	11/19/2014	yes	22.0000	ND			21.0000	***
Di(2-ethylhexyl)phthalate	ug/L	IRP-52	03/12/2015	yes	21.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	IRP-52	05/12/2015		20.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	IRP-52	10/02/2015		22.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	IRP-52	04/15/2016		22.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	IRP-52	10/14/2016		21.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	IRP-52	05/12/2017		22.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	IRP-52	09/14/2017		22.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	IRP-52	06/14/2018		23.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	IRP-52	10/18/2018		22.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	IRP-52	05/02/2019		23.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	IRP-52	09/06/2019		25.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	IRP-52	05/08/2020		23.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	IRP-52	09/18/2020		23.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	IRP-52	06/24/2021		13.0000					
Di(2-ethylhexyl)phthalate	ug/L	IRP-52	11/04/2021		9.7000	ND				
Di(2-ethylhexyl)phthalate	ug/L	IRP-52	12/13/2021		9.8000	ND				
Di(2-ethylhexyl)phthalate	ug/L	IRP-52	06/14/2022		9.7000	ND				
Di(2-ethylhexyl)phthalate	ug/L	IRP-52	08/12/2022		9.7000	ND				
Di(2-ethylhexyl)phthalate	ug/L	IRP-52	06/06/2023		9.7000	ND				
Di(2-ethylhexyl)phthalate	ug/L	IRP-52	08/29/2023		10.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	IRP-52	06/25/2024		4.9000	ND				
Lead	uğ/L	IRP-52	06/26/2014	yes	3.0000	ND				
Lead	ug/L	IRP-52	09/04/2014	yes	3.0000	ND				
Lead	ug/L	IRP-52	11/19/2014	yes	3.0000	ND				
Lead	ug/L	IRP-52	03/12/2015	yes	3.0000	ND				
Lead	ug/L	IRP-52	05/12/2015		3.0000	ND				
Lead	ug/L	IRP-52	10/02/2015		3.3800	ND				
Lead	ug/L	IRP-52	04/15/2016		3.3800	ND				
Lead	ug/L	IRP-52	10/14/2016		3.3800	ND				

Analytical Data and CUSUM Summary

* - Outlier for that well and constituent.
** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.
*** - ND value replaced with median RL.
**** - ND value replaced with manual RL.
ND = Not detected, Result = detection limit.

		1	-			-	1			
Constituent	Units	Well	Date	Background	Result		Outlier	CUSUM	Adjusted	
Lead	ug/L	IRP-52	05/11/2017		3.3800	ND				
Lead	ug/L	IRP-52	09/14/2017		3.3800	ND				
Lead	ug/L	IRP-52	05/16/2018		3.3800	ND				
Lead	ug/L	IRP-52	10/18/2018		3.3800	ND				
Lead	ug/L	IRP-52	05/02/2019		3.3800	ND				
Lead	ug/L	IRP-52	09/06/2019		3.3800	ND				
Lead	ug/L	IRP-52	05/08/2020		3.0000	ND				
Lead	ug/L	IRP-52	09/18/2020		3.0000	ND				
Lead	ug/L	IRP-52	06/24/2021		50.0000	ND				
Lead	ug/L	IRP-52	11/29/2021		1.0000	ND				
Lead	ug/L	IRP-52	06/14/2022		1.0000	ND				
Lead	ug/L	IRP-52	08/12/2022		1.0000	ND				
Lead	ug/L	IRP-52	06/06/2023		1.0000	ND				
Lead	ug/L	IRP-52	08/29/2023		1.0000	ND				
Lead	ug/L	IRP-52	06/25/2024		50.0000	ND				
Mercury	ug/L	IRP-52	06/26/2014	yes	0.0675	ND		0.1455		
Mercury	ug/L	IRP-52	09/04/2014	yes	0.1500			0.1455		
Mercury	ug/L	IRP-52	11/19/2014	yes	0.2970			0.1888		
Mercury	ug/L	IRP-52	03/12/2015	yes	0.0675	ND		0.1455		
Mercury	ug/L	IRP-52	05/12/2015		0.0675	ND		0.1455		
Mercury	ug/L	IRP-52	10/02/2015		0.0675	ND		0.1455		
Mercury	ug/L	IRP-52	04/15/2016		0.0675	ND		0.1455		
Mercury	ug/L	IRP-52	10/14/2016		0.0675	ND		0.1455		
Mercury	ug/L	IRP-52	05/11/2017		0.0675	ND		0.1455		
Mercury	ug/L	IRP-52	09/14/2017		0.0070	ND		0.1455		
Mercury	ug/L	IRP-52	05/16/2018		0.0070	ND		0.1455		
Mercury	ug/L	IRP-52	10/18/2018		0.0070	ND		0.1455		
Mercury	ug/L	IRP-52	05/02/2019		0.0070	ND		0.1455		
Mercury	ug/L	IRP-52	09/06/2019		0.0070	ND		0.1455		
Mercury	ug/L	IRP-52	05/08/2020		0.0070	ND		0.1455		
Mercury	ug/L	IRP-52	09/18/2020		0.0050	ND		0.1455		
Mercury	ug/L	IRP-52	06/24/2021		0.5000	ND		0.1455		

Analytical Data and CUSUM Summary

* - Outlier for that well and constituent.
** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.
*** - ND value replaced with median RL.
**** - ND value replaced with manual RL.
ND = Not detected, Result = detection limit.

							A			
Constituent	Units	Well	Date	Background	Result		Outlier	CUSUM	Adjusted	
Mercury	ug/L	IRP-52	11/29/2021		0.5000	ND		0.1455		
Mercury	ug/L	IRP-52	06/14/2022		0.5000	ND		0.1455		
Mercury	ug/L	IRP-52	08/12/2022		0.5000	ND		0.1455		
Mercury	ug/L	IRP-52	06/06/2023		0.2000	ND		0.1455		
Mercury	ug/L	IRP-52	08/29/2023		0.2000	ND		0.1455		
Mercury	ug/L	IRP-52	06/25/2024		0.2000	ND		0.1455		
RDX	ug/L	IRP-52	06/26/2014	yes	1.0000	ND				
RDX	ug/L	IRP-52	09/04/2014	yes	1.0000	ND				
RDX	ug/L	IRP-52	11/19/2014	yes	1.0000	ND				
RDX	ug/L	IRP-52	03/12/2015	yes	1.0000	ND				
RDX	ug/L	IRP-52	05/12/2015		1.0000	ND				
RDX	ug/L	IRP-52	10/02/2015		1.0000	ND				
RDX	ug/L	IRP-52	04/15/2016		1.0000	ND				
RDX	ug/L	IRP-52	10/14/2016		1.0000	ND				
RDX	ug/L	IRP-52	05/12/2017		1.0000	ND				
RDX	ug/L	IRP-52	09/14/2017		1.0000	ND				
RDX	ug/L	IRP-52	05/16/2018		1.0000	ND				
RDX	ug/L	IRP-52	10/18/2018		1.0000	ND				
RDX	ug/L	IRP-52	05/02/2019		1.0000	ND				
RDX	ug/L	IRP-52	09/06/2019		1.0000	ND				
RDX	ug/L	IRP-52	05/08/2020		1.0000	ND				
RDX	ug/L	IRP-52	09/18/2020		1.0000	ND				
RDX	ug/L	IRP-52	06/24/2021		1.2000	ND				
RDX	ug/L	IRP-52	12/13/2021		1.2000	ND				
RDX	ug/L	IRP-52	06/14/2022		1.1000	ND				
RDX	ug/L	IRP-52	08/12/2022		1.1000	ND				
RDX	ug/L	IRP-52	06/06/2023		1.1000	ND				
RDX	ug/L	IRP-52	08/29/2023		1.1000	ND				
RDX	ug/L	IRP-52	06/25/2024		1.1000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-1	06/17/2014	yes	22.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-1	09/05/2014	yes	20.0000	ND			22.0000	***
Di(2-ethylhexyl)phthalate	ug/L	SP-1	11/14/2014	yes	22.0000	ND				

Analytical Data and CUSUM Summary

* - Outlier for that well and constituent.
** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.
*** - ND value replaced with median RL.
**** - ND value replaced with manual RL.
ND = Not detected, Result = detection limit.

			-			-				
Constituent	Units	Well	Date	Background	Result		Outlier	CUSUM	Adjusted	
Di(2-ethylhexyl)phthalate	ug/L	SP-1	03/23/2015	yes	22.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-1	05/07/2015		22.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-1	10/22/2015		21.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-1	04/12/2016		21.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-1	10/13/2016		20.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-1	05/12/2017		19.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-1	09/15/2017		23.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-1	05/17/2018		21.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-1	10/18/2018		22.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-1	05/03/2019		22.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-1	09/06/2019		24.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-1	05/07/2020		22.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-1	09/17/2020		22.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-1	06/23/2021		9.5000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-1	11/29/2021		9.5000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-1	06/14/2022		9.7000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-1	08/12/2022		9.7000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-1	06/06/2023		9.7000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-1	08/29/2023		10.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-1	06/25/2024		5.0000	ND				
Lead	uğ/L	SP-1	06/17/2014	yes	3.0000	ND				
Lead	ug/L	SP-1	09/05/2014	yes	3.0000	ND				
Lead	ug/L	SP-1	11/14/2014	yes	3.0000	ND				
Lead	ug/L	SP-1	03/23/2015	yes	3.0000	ND				
Lead	ug/L	SP-1	05/07/2015		3.0000	ND				
Lead	ug/L	SP-1	10/22/2015		3.3800	ND				
Lead	ug/L	SP-1	04/12/2016		3.3800	ND				
Lead	ug/L	SP-1	10/13/2016		3.3800	ND				
Lead	ug/L	SP-1	05/11/2017		3.3800	ND				
Lead	ug/L	SP-1	09/15/2017		3.3800	ND				
Lead	ug/L	SP-1	05/17/2018		3.3800	ND				
Lead	ug/L	SP-1	10/18/2018		3.3800	ND				

Analytical Data and CUSUM Summary

Constituent	Units	Well	Date	Background	Result		Outlier	CUSUM	Adjusted	
Lead	ug/L	SP-1	05/03/2019		3.3800	ND				
Lead	ug/L	SP-1	09/06/2019		3.3800	ND				
Lead	ug/L	SP-1	05/07/2020		3.0000	ND				
Lead	ug/L	SP-1	09/17/2020		3.0000	ND				l
Lead	ug/L	SP-1	06/23/2021		50.0000	ND				
Lead	ug/L	SP-1	11/29/2021		1.0000	ND				l
Lead	ug/L	SP-1	06/14/2022		1.0000	ND				l
Lead	ug/L	SP-1	08/12/2022		1.0000	ND				
Lead	ug/L	SP-1	06/06/2023		1.0000	ND				l
Lead	ug/L	SP-1	08/29/2023		1.0000	ND				l
Lead	ug/L	SP-1	06/25/2024		50.0000	ND				
Mercury	ug/L	SP-1	06/17/2014	yes	0.0675	ND		0.0929		
Mercury	ug/L	SP-1	09/05/2014	yes	0.0675	ND		0.0929		
Mercury	ug/L	SP-1	11/14/2014	yes	0.1690			0.1183		
Mercury	ug/L	SP-1	03/23/2015	yes	0.0675	ND		0.0929		l
Mercury	ug/L	SP-1	05/07/2015		0.0675	ND		0.0929		
Mercury	ug/L	SP-1	10/22/2015		0.0675	ND		0.0929		
Mercury	ug/L	SP-1	04/12/2016		0.0675	ND		0.0929		l
Mercury	ug/L	SP-1	10/13/2016		0.0675	ND		0.0929		
Mercury	ug/L	SP-1	05/11/2017		0.0675	ND		0.0929		l
Mercury	ug/L	SP-1	09/15/2017		0.0070	ND		0.0929		
Mercury	ug/L	SP-1	05/17/2018		0.0070	ND		0.0929		
Mercury	ug/L	SP-1	10/18/2018		0.0070	ND		0.0929		l
Mercury	ug/L	SP-1	05/03/2019		0.0070	ND		0.0929		
Mercury	ug/L	SP-1	09/06/2019		0.0070	ND		0.0929		
Mercury	ug/L	SP-1	05/07/2020		0.0070	ND		0.0929		l
Mercury	ug/L	SP-1	09/17/2020		0.0050	ND		0.0929		
Mercury	ug/L	SP-1	06/23/2021		0.5000	ND		0.0929		
Mercury	ug/L	SP-1	11/29/2021		0.5000	ND		0.0929		
Mercury	ug/L	SP-1	06/14/2022		0.5000	ND		0.0929		
Mercury	ug/L	SP-1	08/12/2022		0.5000	ND		0.0929		
Mercury	ug/L	SP-1	06/06/2023		0.2000	ND		0.0929		

Analytical Data and CUSUM Summary

Constituent	Units	Well	Date	Background	Result		Outlier	CUSUM	Adjusted	
Mercury	ug/L	SP-1	08/29/2023		0.2000	ND		0.0929		
Mercury	ug/L	SP-1	06/25/2024		0.2000	ND		0.0929		
RDX	ug/L	SP-1	06/17/2014	yes	1.0000	ND				
RDX	ug/L	SP-1	09/05/2014	yes	1.0000	ND				
RDX	ug/L	SP-1	11/14/2014	yes	1.0000	ND				
RDX	ug/L	SP-1	03/23/2015	yes	1.0000	ND				
RDX	ug/L	SP-1	05/07/2015		1.0000	ND				
RDX	ug/L	SP-1	10/22/2015		1.0000	ND				
RDX	ug/L	SP-1	04/12/2016		1.0000	ND				
RDX	ug/L	SP-1	10/13/2016		1.0000	ND				
RDX	ug/L	SP-1	05/12/2017		1.0000	ND				
RDX	ug/L	SP-1	09/15/2017		1.0000	ND				
RDX	ug/L	SP-1	05/17/2018		1.0000	ND				
RDX	ug/L	SP-1	10/18/2018		1.0000	ND				
RDX	ug/L	SP-1	05/03/2019		1.0000	ND				
RDX	ug/L	SP-1	09/06/2019		1.0000	ND				
RDX	ug/L	SP-1	05/07/2020		1.0000	ND				
RDX	ug/L	SP-1	09/17/2020		1.0000	ND				
RDX	ug/L	SP-1	06/23/2021		1.1000	ND				
RDX	ug/L	SP-1	11/29/2021		1.1000	ND				
RDX	ug/L	SP-1	06/14/2022		1.1000	ND				
RDX	ug/L	SP-1	08/12/2022		1.2000	ND				
RDX	ug/L	SP-1	06/06/2023		1.1000	ND				
RDX	ug/L	SP-1	08/29/2023		1.2000	ND				
RDX	ug/L	SP-1	10/25/2023		1.1500	ND				
RDX	ug/L	SP-1	06/25/2024		1.2000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-2	06/17/2014	yes	22.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-2	09/05/2014	yes	21.0000	ND			22.0000	***
Di(2-ethylhexyl)phthalate	ug/L	SP-2	11/14/2014	yes	22.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-2	03/23/2015	yes	22.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-2	05/07/2015	-	20.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-2	10/21/2015		21.0000	ND				

Analytical Data and CUSUM Summary

			-			-				
Constituent	Units	Well	Date	Background	Result		Outlier	CUSUM	Adjusted	
Di(2-ethylhexyl)phthalate	ug/L	SP-2	04/12/2016		24.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-2	10/13/2016		20.5000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-2	05/12/2017		21.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-2	09/15/2017		22.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-2	05/17/2018		22.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-2	10/18/2018		23.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-2	05/03/2019		23.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-2	09/06/2019		24.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-2	05/07/2020		23.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-2	09/17/2020		22.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-2	06/23/2021		9.7000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-2	11/29/2021		9.7000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-2	06/14/2022		9.6000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-2	08/12/2022		9.7000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-2	06/06/2023		9.7000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-2	08/29/2023		9.8500	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-2	06/25/2024		4.9000	ND				
Lead	ug/L	SP-2	06/17/2014	yes	3.0000	ND				
Lead	ug/L	SP-2	09/05/2014	yes	3.0000	ND				
Lead	ug/L	SP-2	11/14/2014	yes	3.0000	ND				
Lead	ug/L	SP-2	03/23/2015	yes	3.0000	ND				
Lead	ug/L	SP-2	05/07/2015		3.0000	ND				
Lead	ug/L	SP-2	10/21/2015		3.3800	ND				
Lead	ug/L	SP-2	04/12/2016		3.3800	ND				
Lead	ug/L	SP-2	10/13/2016		3.3800	ND				
Lead	ug/L	SP-2	05/11/2017		3.3800	ND				
Lead	ug/L	SP-2	09/15/2017		3.3800	ND				
Lead	ug/L	SP-2	05/17/2018		3.3800	ND				
Lead	ug/L	SP-2	10/18/2018		3.3800	ND				
Lead	ug/L	SP-2	05/03/2019		3.3800	ND				
Lead	ug/L	SP-2	09/06/2019		3.3800	ND				
Lead	ug/L	SP-2	05/07/2020		3.0000	ND				

Analytical Data and CUSUM Summary

Constituent	Units	Well	Date	Background	Result		Outlier	CUSUM	Adjusted	
Lead	ug/L	SP-2	09/17/2020		3.0000	ND				
Lead	ug/L	SP-2	06/23/2021		50.0000	ND				
Lead	ug/L	SP-2	11/29/2021		1.0000	ND				
Lead	ug/L	SP-2	06/14/2022		1.0000	ND				
Lead	ug/L	SP-2	08/12/2022		1.0000	ND				
Lead	ug/L	SP-2	06/06/2023		1.0000	ND				
Lead	ug/L	SP-2	08/29/2023		1.0000	ND				
Lead	ug/L	SP-2	06/25/2024		50.0000	ND				
Mercury	ug/L	SP-2	06/17/2014	yes	0.0675	ND		0.1051		
Mercury	ug/L	SP-2	09/05/2014	yes	0.0675	ND		0.1051		
Mercury	ug/L	SP-2	11/14/2014	yes	0.2180			0.1427		
Mercury	ug/L	SP-2	03/23/2015	yes	0.0675	ND		0.1051		
Mercury	ug/L	SP-2	05/07/2015		0.0675	ND		0.1051		
Mercury	ug/L	SP-2	10/21/2015		0.0675	ND		0.1051		
Mercury	ug/L	SP-2	04/12/2016		0.0675	ND		0.1051		
Mercury	ug/L	SP-2	10/13/2016		0.0675	ND		0.1051		
Mercury	ug/L	SP-2	05/11/2017		0.0675	ND		0.1051		
Mercury	ug/L	SP-2	09/15/2017		0.0070	ND		0.1051		
Mercury	ug/L	SP-2	05/17/2018		0.0070	ND		0.1051		
Mercury	ug/L	SP-2	10/18/2018		0.0070	ND		0.1051		
Mercury	ug/L	SP-2	05/03/2019		0.0070	ND		0.1051		
Mercury	ug/L	SP-2	09/06/2019		0.0070	ND		0.1051		
Mercury	ug/L	SP-2	05/07/2020		0.0070	ND		0.1051		
Mercury	ug/L	SP-2	09/17/2020		0.0050	ND		0.1051		
Mercury	ug/L	SP-2	06/23/2021		0.5000	ND		0.1051		
Mercury	ug/L	SP-2	11/29/2021		0.5000	ND		0.1051		
Mercury	ug/L	SP-2	06/14/2022		0.5000	ND		0.1051		
Mercury	ug/L	SP-2	08/12/2022		0.5000	ND		0.1051		
Mercury	ug/L	SP-2	06/06/2023		0.2000	ND		0.1051		
Mercury	ug/L	SP-2	08/29/2023		0.2000	ND		0.1051		
Mercury	ug/L	SP-2	06/25/2024		0.2000	ND		0.1051		
RDX	ug/L	SP-2	06/17/2014	yes	1.0000	ND				

Analytical Data and CUSUM Summary

Constituent	Units	Well	Date	Background	Result		Outlier	CUSUM	Adjusted	
RDX	ug/L	SP-2	09/05/2014	yes	1.0000	ND				
RDX	ug/L	SP-2	11/14/2014	yes	1.0000	ND				
RDX	ug/L	SP-2	03/23/2015	yes	1.0000	ND				
RDX	ug/L	SP-2	05/07/2015		1.0000	ND				
RDX	ug/L	SP-2	10/21/2015		1.0000	ND				
RDX	ug/L	SP-2	04/12/2016		1.0000	ND				
RDX	ug/L	SP-2	10/13/2016		1.0000	ND				
RDX	ug/L	SP-2	05/12/2017		1.0000	ND				
RDX	ug/L	SP-2	09/15/2017		1.0000	ND				
RDX	ug/L	SP-2	05/17/2018		1.0000	ND				
RDX	ug/L	SP-2	10/18/2018		1.0000	ND				
RDX	ug/L	SP-2	05/03/2019		1.0000	ND				
RDX	ug/L	SP-2	09/06/2019		1.0000	ND				
RDX	ug/L	SP-2	05/07/2020		1.0000	ND				
RDX	ug/L	SP-2	09/17/2020		1.0000	ND				
RDX	ug/L	SP-2	06/23/2021		1.1000	ND				
RDX	ug/L	SP-2	11/29/2021		1.1000	ND				
RDX	ug/L	SP-2	06/14/2022		1.1000	ND				
RDX	ug/L	SP-2	08/12/2022		1.2000	ND				
RDX	ug/L	SP-2	06/06/2023		1.2000	ND				
RDX	ug/L	SP-2	08/29/2023		1.2000	ND				
RDX	ug/L	SP-2	06/25/2024		1.1000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-4	06/17/2014	yes	22.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-4	09/05/2014	yes	22.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-4	11/14/2014	yes	22.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-4	03/23/2015	yes	20.0000	ND			22.0000	***
Di(2-ethylhexyl)phthalate	ug/L	SP-4	05/07/2015	-	20.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-4	10/21/2015		21.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-4	04/12/2016		22.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-4	10/13/2016		21.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-4	05/12/2017		21.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-4	09/15/2017		24.0000	ND				

Analytical Data and CUSUM Summary

		1	-				1			
Constituent	Units	Well	Date	Background	Result		Outlier	CUSUM	Adjusted	
Di(2-ethylhexyl)phthalate	ug/L	SP-4	05/17/2018		21.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-4	10/18/2018		22.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-4	05/03/2019		22.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-4	09/06/2019		24.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-4	05/07/2020		22.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-4	09/17/2020		22.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-4	06/23/2021		9.5000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-4	11/29/2021		9.5000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-4	06/14/2022		9.6000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-4	08/12/2022		9.5500	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-4	06/06/2023		9.5500	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-4	08/29/2023		9.8000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-4	06/25/2024		4.9000	ND				
Lead	ug/L	SP-4	06/17/2014	yes	3.0000	ND				
Lead	ug/L	SP-4	09/05/2014	yes	3.0000	ND				
Lead	ug/L	SP-4	11/14/2014	yes	3.0000	ND				
Lead	ug/L	SP-4	03/23/2015	yes	3.0000	ND				
Lead	ug/L	SP-4	05/07/2015		3.0000	ND				
Lead	ug/L	SP-4	10/21/2015		3.0000	ND				
Lead	ug/L	SP-4	04/12/2016		3.0000	ND				
Lead	ug/L	SP-4	10/13/2016		3.3800	ND				
Lead	ug/L	SP-4	05/11/2017		3.3800	ND				
Lead	ug/L	SP-4	09/15/2017		3.3800	ND				
Lead	ug/L	SP-4	05/17/2018		3.3800	ND				
Lead	ug/L	SP-4	10/18/2018		3.3800	ND				
Lead	ug/L	SP-4	05/03/2019		3.3800	ND				
Lead	ug/L	SP-4	09/06/2019		3.3800	ND				
Lead	ug/L	SP-4	05/07/2020		3.0000	ND				
Lead	ug/L	SP-4	09/17/2020		3.0000	ND				
Lead	ug/L	SP-4	06/23/2021		50.0000	ND				
Lead	ug/L	SP-4	11/29/2021		1.0000	ND				
Lead	ug/L	SP-4	06/14/2022		1.0000	ND				

Analytical Data and CUSUM Summary

Constituent	Units	Well	Date	Background	Result		Outlier	CUSUM	Adjusted
Lead	ug/L	SP-4	08/12/2022		1.0000	ND			
Lead	ug/L	SP-4	06/06/2023		1.0000	ND			
Lead	ug/L	SP-4	08/29/2023		1.0000	ND			
Lead	ug/L	SP-4	06/25/2024		50.0000	ND			
Mercury	ug/L	SP-4	06/17/2014	yes	0.0675	ND		0.0934	
Mercury	ug/L	SP-4	09/05/2014	yes	0.0675	ND		0.0934	
Mercury	ug/L	SP-4	11/14/2014	yes	0.1710			0.1193	
Mercury	ug/L	SP-4	03/23/2015	yes	0.0675	ND		0.0934	
Mercury	ug/L	SP-4	05/07/2015		0.0675	ND		0.0934	
Mercury	ug/L	SP-4	10/21/2015		0.0675	ND		0.0934	
Mercury	ug/L	SP-4	04/12/2016		0.0675	ND		0.0934	
Mercury	ug/L	SP-4	10/13/2016		0.0675	ND		0.0934	
Mercury	ug/L	SP-4	05/11/2017		0.0675	ND		0.0934	
Mercury	ug/L	SP-4	09/15/2017		0.0070	ND		0.0934	
Mercury	ug/L	SP-4	05/17/2018		0.0070	ND		0.0934	
Mercury	ug/L	SP-4	10/18/2018		0.0070	ND		0.0934	
Mercury	ug/L	SP-4	05/03/2019		0.0070	ND		0.0934	
Mercury	ug/L	SP-4	09/06/2019		0.0070	ND		0.0934	
Mercury	ug/L	SP-4	05/07/2020		0.0070	ND		0.0934	
Mercury	ug/L	SP-4	09/17/2020		0.0050	ND		0.0934	
Mercury	ug/L	SP-4	06/23/2021		0.5000	ND		0.0934	
Mercury	ug/L	SP-4	11/29/2021		0.5000	ND		0.0934	
Mercury	ug/L	SP-4	06/14/2022		0.5000	ND		0.0934	
Mercury	ug/L	SP-4	08/12/2022		0.5000	ND		0.0934	
Mercury	ug/L	SP-4	06/06/2023		0.2000	ND		0.0934	
Mercury	ug/L	SP-4	08/29/2023		0.2000	ND		0.0934	
Mercury	ug/L	SP-4	06/25/2024		0.2000	ND		0.0934	
RDX	ug/L	SP-4	06/17/2014	yes	1.0000	ND			
RDX	ug/L	SP-4	09/05/2014	yes	1.0000	ND			
RDX	ug/L	SP-4	11/14/2014	yes	1.0000	ND			
RDX	ug/L	SP-4	03/23/2015	yes	1.0000	ND			
RDX	ug/L	SP-4	05/07/2015	-	1.0000	ND			

Analytical Data and CUSUM Summary

Constituent	Units	Well	Date	Background	Result		Outlier	CUSUM	Adjusted	
RDX	ug/L	SP-4	10/21/2015	Buonground	1.0000	ND	e allioi		, lujuolou	
RDX	ug/L	SP-4	04/12/2016		1.0000	ND				
RDX	ug/L	SP-4	10/13/2016		1.0000	ND				
RDX	ug/L	SP-4	05/12/2017		1.0000	ND				
RDX	ug/L	SP-4	09/15/2017		1.0000	ND				
RDX	ug/L	SP-4	05/17/2018		1.0000	ND				
RDX	ug/L	SP-4	10/18/2018		1.0000	ND				
RDX	ug/L	SP-4	05/03/2019		1.0000	ND				
RDX	ug/L	SP-4	09/06/2019		1.0000	ND				
RDX	ug/L	SP-4	05/07/2020		1.0000	ND				
RDX	ug/L	SP-4	09/17/2020		1.0000	ND				
RDX	ug/L	SP-4	06/23/2021		1.1000	ND				
RDX	ug/L	SP-4	11/29/2021		1.1000	ND				
RDX	ug/L	SP-4	06/14/2022		1.1000	ND				
RDX	ug/L	SP-4	08/12/2022		1.1000	ND				
RDX	ug/L	SP-4	06/06/2023		1.1000	ND				
RDX	ug/L	SP-4	08/29/2023		1.1000	ND				
RDX	ug/L	SP-4	10/25/2023		1.1000	ND				
RDX	ug/L	SP-4	06/25/2024		1.1000	ND				
Di(2-ethylhexyl)phthalate	uğ/L	SP-5	06/17/2014	yes	21.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-5	09/05/2014	yes	21.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-5	11/14/2014	yes	20.0000	ND			21.0000	***
Di(2-ethylhexyl)phthalate	ug/L	SP-5	03/23/2015	yes	22.0000	ND			21.0000	***
Di(2-ethylhexyl)phthalate	ug/L	SP-5	05/07/2015		20.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-5	10/22/2015		22.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-5	04/12/2016		19.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-5	10/13/2016		22.5000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-5	05/12/2017		22.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-5	09/15/2017		20.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-5	05/17/2018		19.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-5	10/18/2018		22.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-5	05/03/2019		28.0000	ND				

Analytical Data and CUSUM Summary

		1	-			-				
Constituent	Units	Well	Date	Background	Result		Outlier	CUSUM	Adjusted	
Di(2-ethylhexyl)phthalate	ug/L	SP-5	09/06/2019		23.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-5	05/07/2020		22.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-5	09/17/2020		24.0000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-5	06/23/2021		9.5000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-5	11/29/2021		9.5000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-5	06/14/2022		9.6000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-5	08/12/2022		9.5000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-5	06/06/2023		9.5000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-5	08/29/2023		9.8000	ND				
Di(2-ethylhexyl)phthalate	ug/L	SP-5	06/25/2024		4.9000	ND				
Lead	ug/L	SP-5	06/17/2014	yes	3.0000	ND				
Lead	ug/L	SP-5	09/05/2014	yes	3.0000	ND				
Lead	ug/L	SP-5	11/14/2014	yes	3.0000	ND				
Lead	ug/L	SP-5	03/23/2015	yes	3.0000	ND				
Lead	ug/L	SP-5	05/07/2015		3.0000	ND				
Lead	ug/L	SP-5	10/22/2015		3.0000	ND				
Lead	ug/L	SP-5	04/12/2016		3.0000	ND				
Lead	ug/L	SP-5	10/13/2016		3.3800	ND				
Lead	ug/L	SP-5	05/11/2017		3.3800	ND				
Lead	ug/L	SP-5	09/15/2017		3.3800	ND				
Lead	ug/L	SP-5	05/17/2018		3.3800	ND				
Lead	ug/L	SP-5	10/18/2018		3.3800	ND				
Lead	ug/L	SP-5	05/03/2019		3.3800	ND				
Lead	ug/L	SP-5	09/06/2019		3.3800	ND				
Lead	ug/L	SP-5	05/07/2020		3.0000	ND				
Lead	ug/L	SP-5	09/17/2020		3.0000	ND				
Lead	ug/L	SP-5	06/23/2021		50.0000	ND				
Lead	ug/L	SP-5	11/29/2021		1.0000	ND				
Lead	ug/L	SP-5	06/14/2022		1.0000	ND				
Lead	ug/L	SP-5	08/12/2022		1.0000	ND				
Lead	ug/L	SP-5	06/06/2023		1.0000	ND				
Lead	ug/L	SP-5	08/29/2023		1.0000	ND				

Analytical Data and CUSUM Summary

Constituent	Units	Well	Date	Background	Result		Outlier	CUSUM	Adjusted	
Lead	ug/L	SP-5	06/25/2024		50.0000	ND				
Mercury	ug/L	SP-5	06/17/2014	yes	0.0675	ND		0.0874		
Mercury	ug/L	SP-5	09/05/2014	yes	0.0675	ND		0.0874		
Mercury	ug/L	SP-5	11/14/2014	yes	0.1470			0.1073		
Mercury	ug/L	SP-5	03/23/2015	yes	0.0675	ND		0.0874		
Mercury	ug/L	SP-5	05/07/2015		0.0675	ND		0.0874		
Mercury	ug/L	SP-5	10/22/2015		0.0675	ND		0.0874		
Mercury	ug/L	SP-5	04/12/2016		0.0675	ND		0.0874		
Mercury	ug/L	SP-5	10/13/2016		0.0675	ND		0.0874		
Mercury	ug/L	SP-5	05/11/2017		0.0675	ND		0.0874		
Mercury	ug/L	SP-5	09/15/2017		0.0070	ND		0.0874		
Mercury	ug/L	SP-5	05/17/2018		0.0070	ND		0.0874		
Mercury	ug/L	SP-5	10/18/2018		0.0070	ND		0.0874		
Mercury	ug/L	SP-5	05/03/2019		0.0070	ND		0.0874		
Mercury	ug/L	SP-5	09/06/2019		0.0070	ND		0.0874		
Mercury	ug/L	SP-5	05/07/2020		0.0070	ND		0.0874		
Mercury	ug/L	SP-5	09/17/2020		0.0050	ND		0.0874		
Mercury	ug/L	SP-5	06/23/2021		0.5000	ND		0.0874		
Mercury	ug/L	SP-5	11/29/2021		0.5000	ND		0.0874		
Mercury	ug/L	SP-5	06/14/2022		0.5000	ND		0.0874		
Mercury	ug/L	SP-5	08/12/2022		0.5000	ND		0.0874		
Mercury	ug/L	SP-5	06/06/2023		0.2000	ND		0.0874		
Mercury	ug/L	SP-5	08/29/2023		0.2000	ND		0.0874		
Mercury	ug/L	SP-5	06/25/2024		0.2000	ND		0.0874		
RDX	ug/L	SP-5	06/17/2014	yes	1.0000	ND				
RDX	ug/L	SP-5	09/05/2014	yes	1.0000	ND				
RDX	ug/L	SP-5	11/14/2014	yes	1.0000	ND				
RDX	ug/L	SP-5	03/23/2015	yes	1.0000	ND				
RDX	ug/L	SP-5	05/07/2015	,	1.0000	ND				
RDX	ug/L	SP-5	10/22/2015		1.0000	ND				
RDX	ug/L	SP-5	04/12/2016		1.0000	ND				
RDX	ug/L	SP-5	10/13/2016		1.0000	ND				ľ

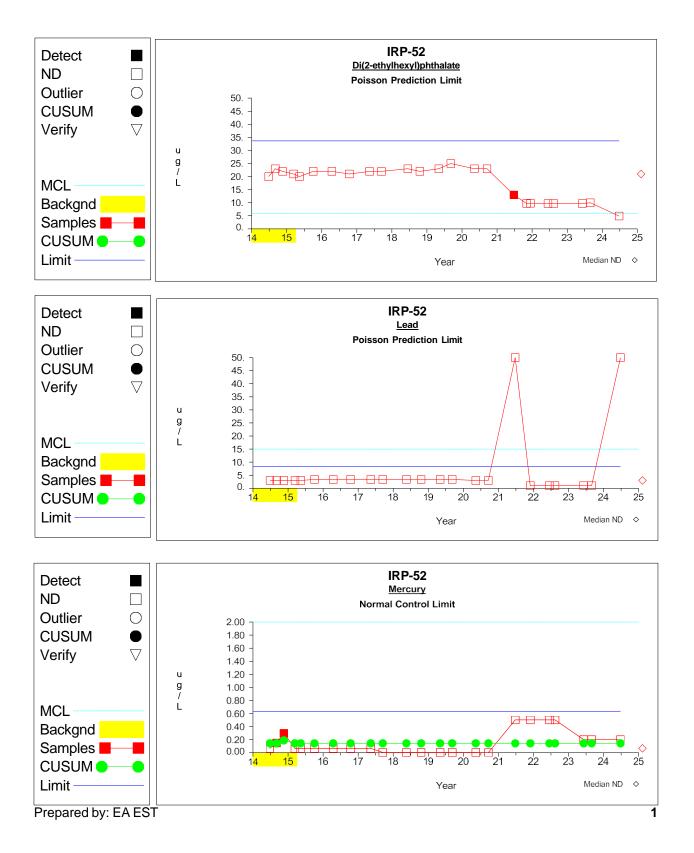
Analytical Data and CUSUM Summary

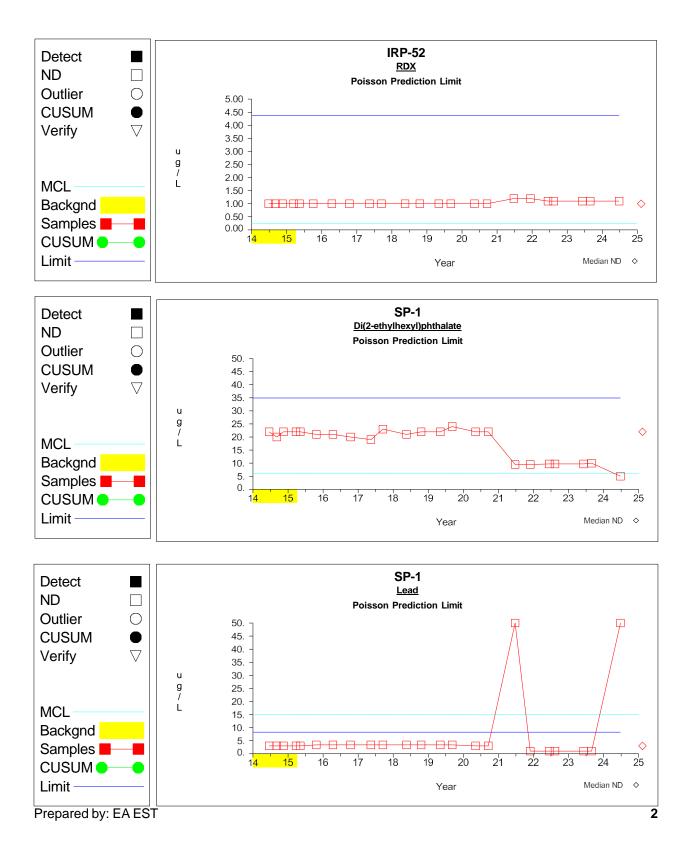
Constituent	Units	Well	Date	Background	Result		Outlier	CUSUM	Adjusted	
RDX	ug/L	SP-5	05/12/2017		1.0000	ND				
RDX	ug/L	SP-5	09/15/2017		1.0000	ND				
RDX	ug/L	SP-5	05/17/2018		1.0000	ND				
RDX	ug/L	SP-5	10/18/2018		1.0000	ND				
RDX	ug/L	SP-5	05/03/2019		1.0000	ND				
RDX	ug/L	SP-5	09/06/2019		1.0000	ND				
RDX	ug/L	SP-5	05/07/2020		1.0000	ND				
RDX	ug/L	SP-5	09/17/2020		1.0000	ND				
RDX	ug/L	SP-5	06/23/2021		1.1000	ND				
RDX	ug/L	SP-5	11/29/2021		1.1000	ND				
RDX	ug/L	SP-5	06/14/2022		1.1000	ND				
RDX	ug/L	SP-5	08/12/2022		1.1000	ND				
RDX	ug/L	SP-5	06/06/2023		1.2000	ND				
RDX	ug/L	SP-5	08/29/2023		1.1000	ND				
RDX	ug/L	SP-5	06/25/2024		1.2000	ND				

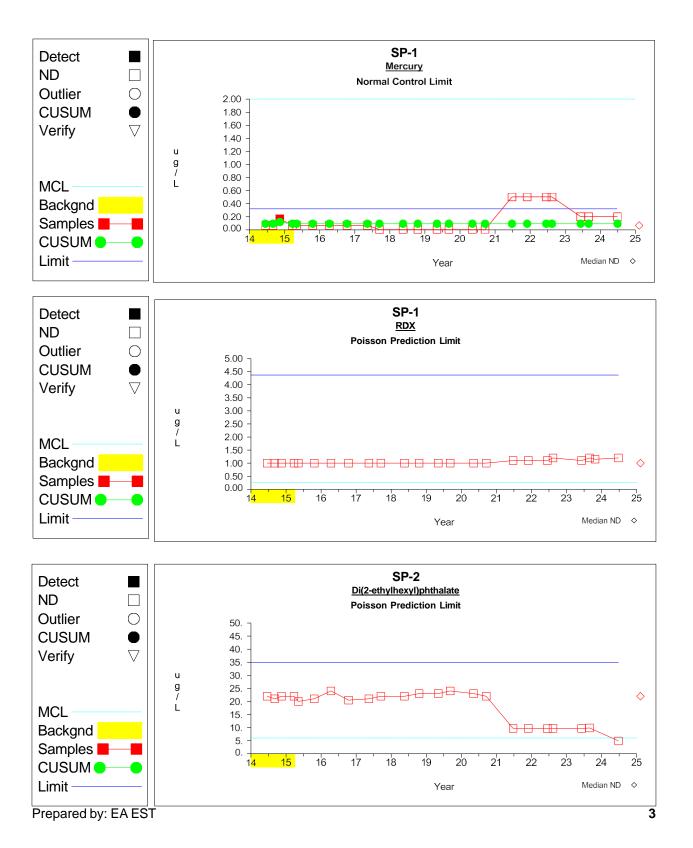
Analytical Data and CUSUM Summary

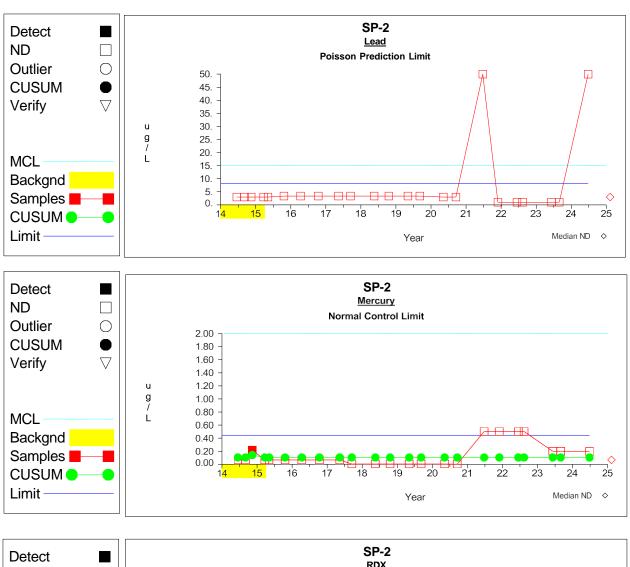
* - Outlier for that well and constituent.

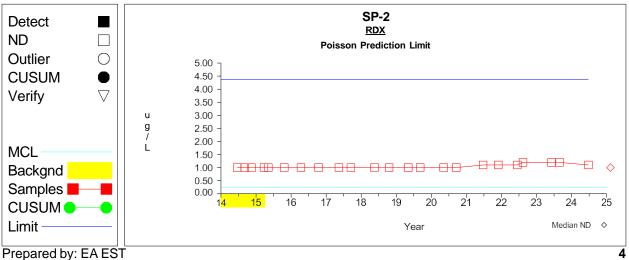
** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.
 *** - ND value replaced with median RL.
 **** - ND value replaced with manual RL.

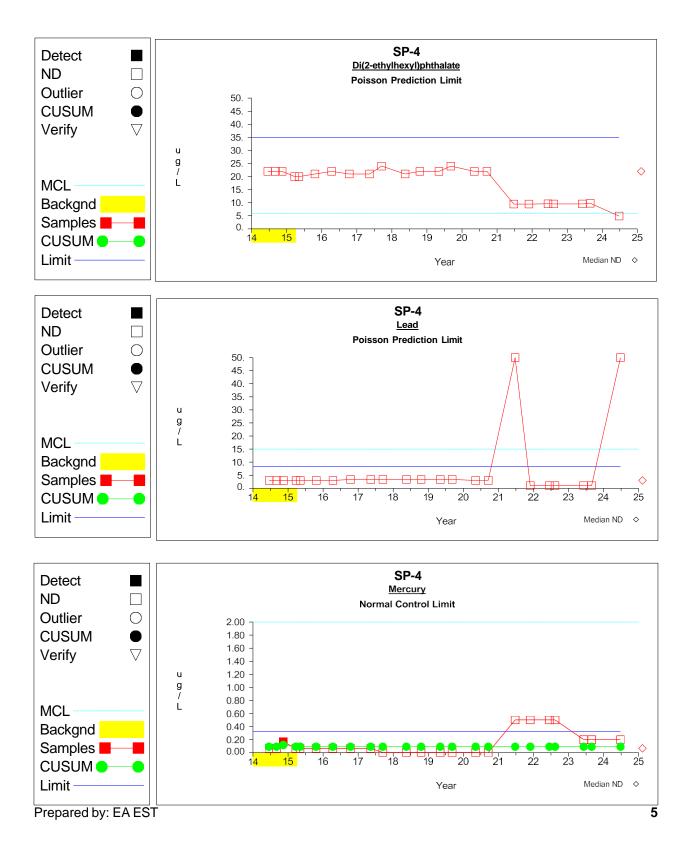

ND = Not detected, Result = detection limit.

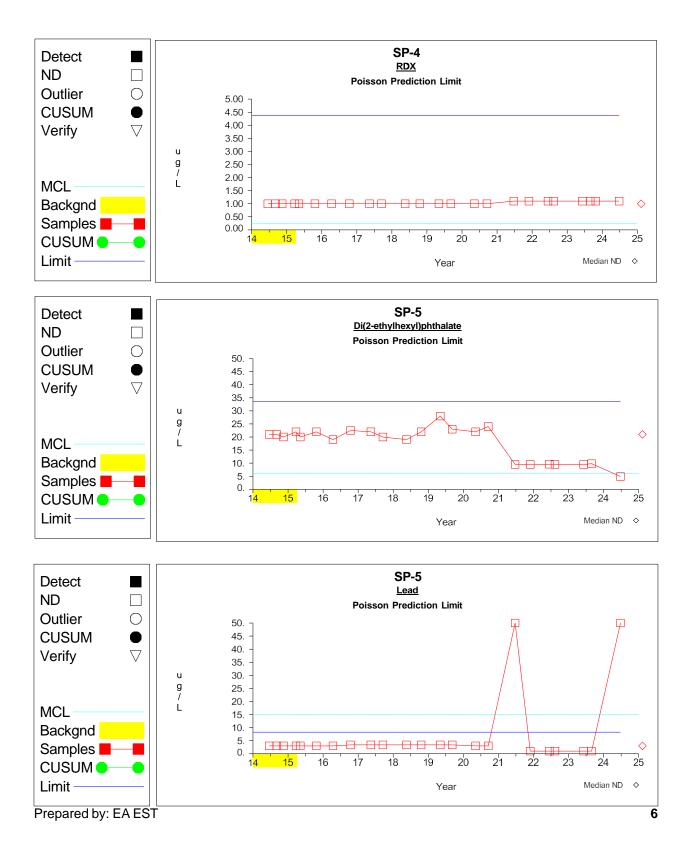

Dixon's Test Outliers 1% Significance Level

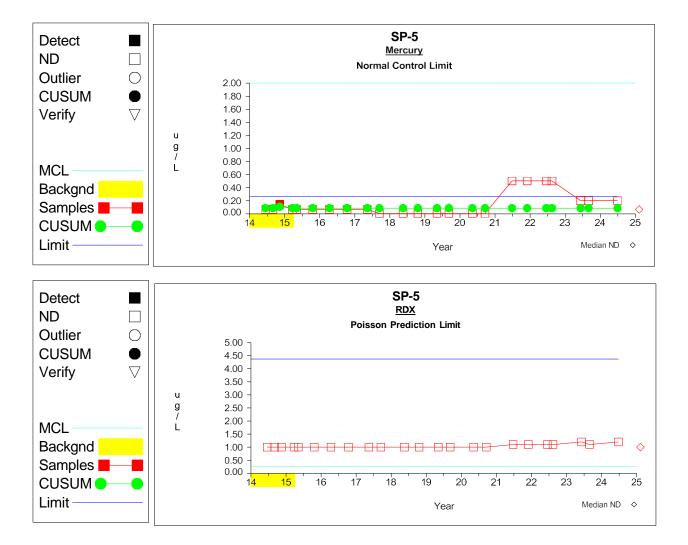

Constituent	Units	Well	Date	Result	ND Qualifier	Date Range	Ν	Critical Value
-------------	-------	------	------	--------	--------------	------------	---	----------------


N = Total number of independent measurements in background at each well. Date Range = Dates of the first and last measurements included in background at each well. Critical Value depends on the significance level and on N-1 when the two most extreme values are tested or


N for the most extreme value.







IRP-52 [IRP-52]

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Di(2-ethylhexyl)phthalate (ug/L) at IRP-52 Poisson Prediction Limit

<u>Step</u>	Equation	Description
1	Transform ppm to ppb if required.	
2	Substitute reporting limit (quantification limit reco	mmended) for nondetects.
3	Y = sum[X] = 84.0	Compute sum of concentrations and/or reporting limits.
4	alpha = min[(195 ^{1/K}) ^{1/2} , .01] = min[(195 ^{1/20}) ^{1/2} , .01] = 0.01	Adjusted per comparison false positive rate. Pass initial or 1 resample.
5	$PL = Y/N + Z^{2}/2N + (Z/N)(Y(1+N) + Z^{2}/4)^{\frac{1}{2}}$ = 84.0/4 + 2.329 ² /(2*4) + (2.329/4)(84.0(1+4) + 2.329^{2}/4)^{\frac{1}{2}} = 33.632	Compute Poisson prediction limit and express result in original metric (<i>e.g.</i> ppb or ppm). Z is the alpha percentage point of the normal distribution.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Lead (ug/L) at IRP-52 Poisson Prediction Limit

<u>Step</u>	Equation	Description
1	Transform ppm to ppb if required.	
2	Substitute reporting limit (quantification limit reco	ommended) for nondetects.
3	Y = sum[X] = 12.0	Compute sum of concentrations and/or reporting limits.
4	alpha = min[(195 ^{1/K}) ^{1/2} , .01] = min[(195 ^{1/20}) ^{1/2} , .01]	Adjusted per comparison false positive rate. Pass initial or 1 resample.
5	= 0.01 $PL = Y/N + Z^{2}/2N + Z^{1/2} + Z^{1$	Compute Poisson prediction limit and express result in original metric (<i>e.g.</i> ppb or ppm). Z is the alpha percentage point of the normal distribution.
	= 8.24	

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Mercury (ug/L) at IRP-52 Normal Control Limit

<u>Step</u>	Equation	Description
1	$\overline{X} = sum[X] / N$	Compute background mean.
	= 0.582 / 4	
	= 0.146	
2	$S = ((sum[X]^{2} - sum[X]^{2}/N)/(N-1))$	Compute background sd.
	$= ((0.12 - 0.339/4) / (4-1))^{\frac{1}{2}}$	
	= 0.108	
3	SCL = X + F * S	Compute combined Shewhart-CUSUM normal control limit.
	= 0.146 + 4.5 * 0.108	
	= 0.633	
4	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 4 * (4 -1) / 2	
	= 6	
5	S = 0.215	Sen's estimator of trend.
6	var(S) = 7.667	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99} * var(S)_{\frac{1}{2}}^{\frac{1}{2}}) / 2$	Ordinal position for one-sided lower confidence limit for slope.
	= (6 - 2.326 * 7.667) / 2	The LCL is the M_1 th largest slope estimate. When M_1 is not an integer, interpolation is used.
	= -0.22	
8	LCL(S) = -0.741	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits RDX (ug/L) at IRP-52 Poisson Prediction Limit

<u>Step</u>	Equation	Description
1	Transform ppm to ppb if required.	
2	Substitute reporting limit (quantification limit rece	ommended) for nondetects.
3	Y = sum[X] = 4.0	Compute sum of concentrations and/or reporting limits.
4	alpha = min[(195 ^{1/K}) ^{1/} 2, .01] = min[(195 ^{1/20}) ^{1/} 2, .01] = 0.01	Adjusted per comparison false positive rate. Pass initial or 1 resample.
5	= 0.01 $PL = Y/N + Z^{2}/2N + Z^{2}/(2N) + Z^{2}/(2N) + Z^{2}/(2^{*}4) +$	Compute Poisson prediction limit and express result in original metric (<i>e.g.</i> ppb or ppm). Z is the alpha percentage point of the normal distribution.
	= 4.369	

Prepared by: EA EST

IRP-52 [IRP-52]

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Di(2-ethylhexyl)phthalate (ug/L) at SP-1 Poisson Prediction Limit

<u>Step</u>	Equation	Description
1	Transform ppm to ppb if required.	
2	Substitute reporting limit (quantification limit rec	ommended) for nondetects.
3	Y = sum[X] = 88.0	Compute sum of concentrations and/or reporting limits.
4	alpha = min[(195 ^{1/K}) ^½ , .01] = min[(195 ^{1/20}) ^½ , .01] = 0.01	Adjusted per comparison false positive rate. Pass initial or 1 resample.
5	$PL = Y/N + Z^{2}/2N + (Z/N)(Y(1+N) + Z^{2}/4)^{\frac{1}{2}}$ = 88.0/4 + 2.329 ² /(2*4) + (2.329/4)(88.0(1+4) + 2.329^{2}/4)^{\frac{1}{2}}	Compute Poisson prediction limit and express result in original metric (<i>e.g.</i> ppb or ppm). Z is the alpha percentage point of the normal distribution.
	= 34.912	

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Lead (ug/L) at SP-1 Poisson Prediction Limit

<u>Step</u>	Equation	Description
1	Transform ppm to ppb if required.	
2	Substitute reporting limit (quantification limit rec	ommended) for nondetects.
3	Y = sum[X] = 12.0	Compute sum of concentrations and/or reporting limits.
4	alpha = min[$(195^{1/\mathbf{K}})^{\frac{1}{2}}$, .01] = min[$(195^{1/20})^{\frac{1}{2}}$, .01]	Adjusted per comparison false positive rate. Pass initial or 1 resample.
	= 0.01	
5	$PL = Y/N + Z^{2}/2N + (Z/N)(Y(1+N) + Z^{4})^{\frac{1}{2}}$ = 12.0/4 + 2.329^{2}/(2*4) + (2.329/4)(12.0(1+4) + 2.329^{4})^{\frac{1}{2}}	Compute Poisson prediction limit and express result in original metric (<i>e.g.</i> ppb or ppm). Z is the alpha percentage point of the normal distribution.
	= 8.24	

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Mercury (ug/L) at SP-1 Normal Control Limit

<u>Step</u>	Equation	Description
1	$\overline{X} = sum[X] / N$	Compute background mean.
	= 0.372 / 4	
	= 0.093	
2	S = $((sum[X] - sum[X] /N) / (N-1))$	Compute background sd.
	$= \left(\left(0.042 - 0.138/4 \right) / (4-1) \right)^{\frac{1}{2}}$	
	= 0.051	
3	$SCL = \overline{X} + F * S$	Compute combined Shewhart-CUSUM normal control limit.
	= 0.093 + 4.5 * 0.051	
	= 0.321	
4	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 4 * (4 -1) / 2	
	= 6	
5	S = 0.0	Sen's estimator of trend.
6	var(S) = 5.0	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99} * var(S)^{\frac{1}{2}}) / 2$	Ordinal position for one-sided lower confidence limit for slope.
	= $(6 - 2.326 * 5.0)^{\frac{1}{2}}$ / 2	The LCL is the M_1 th largest slope estimate. When M_1 is not an integer, interpolation is used.
	= 0.399	
8	LCL(S) = -0.287	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits RDX (ug/L) at SP-1 Poisson Prediction Limit

<u>Step</u>	Equation	Description
1	Transform ppm to ppb if required.	
2	Substitute reporting limit (quantification limit reco	ommended) for nondetects.
3	Y = sum[X] = 4.0	Compute sum of concentrations and/or reporting limits.
4	alpha = min[(195 ^{1/K}) ^{1/} ₂ , .01] = min[(195 ^{1/20}) ^{1/} ₂ , .01] = 0.01	Adjusted per comparison false positive rate. Pass initial or 1 resample.
5	PL = $Y/N + Z^2/2N + Z^{1/2}N + Z^{1/2}N + Z^{1/2}$ = $4.0/4 + 2.329^2/(2*4) + (2.329/4)(4.0(1+4) + 2.329^2/4)^{1/2}$	Compute Poisson prediction limit and express result in original metric (<i>e.g.</i> ppb or ppm). Z is the alpha percentage point of the normal distribution.
	= 4.369	

IRP-52 [IRP-52]

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Di(2-ethylhexyl)phthalate (ug/L) at SP-2 Poisson Prediction Limit

<u>Step</u>	Equation	Description
1	Transform ppm to ppb if required.	
2	Substitute reporting limit (quantification limit reco	ommended) for nondetects.
3	Y = sum[X] = 88.0	Compute sum of concentrations and/or reporting limits.
4	alpha = min[(195 ^{1/K}) ^½ , .01] = min[(195 ^{1/20}) ^½ , .01]	Adjusted per comparison false positive rate. Pass initial or 1 resample.
	= 0.01	
5	$PL = Y/N + Z^{2}/2N + (Z/N)(Y(1+N) + Z^{4})^{\frac{1}{2}}$ = 88.0/4 + 2.329^{2}/(2*4) + (2.329/4)(88.0(1+4) + 2.329^{4})^{\frac{1}{2}}	Compute Poisson prediction limit and express result in original metric (<i>e.g.</i> ppb or ppm). Z is the alpha percentage point of the normal distribution.
	= 34.912	

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Lead (ug/L) at SP-2 Poisson Prediction Limit

<u>Step</u>	Equation	Description
1	Transform ppm to ppb if required.	
2	Substitute reporting limit (quantification limit reco	ommended) for nondetects.
3	Y = sum[X] = 12.0	Compute sum of concentrations and/or reporting limits.
4	alpha = min[(195 ^{1/K}) ^½ , .01] = min[(195 ^{1/20}) ^½ , .01]	Adjusted per comparison false positive rate. Pass initial or 1 resample.
	= 0.01	
5	PL = $Y/N + Z^{2}/2N + Z^{2}/(2N) + Z^{2}/(2N) + Z^{2}/(2^{*}4) + Z^{2}/(2^{*}4) + (2.329/4) + (2.329/4) + 2.329^{2}/(2^{*}4) + Z^{2}/(2^{*}4) + Z^{2}/(2^{*}4$	Compute Poisson prediction limit and express result in original metric (<i>e.g.</i> ppb or ppm). Z is the alpha percentage point of the normal distribution.
	= 8.24	

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Mercury (ug/L) at SP-2 Normal Control Limit

<u>Step</u>	Equation	Description
1	$\overline{X} = sum[X] / N$	Compute background mean.
	= 0.421 / 4	
	= 0.105	
2	$S = ((sum[X]^{2} - sum[X]^{2}/N)/(N-1))$	Compute background sd.
	$= \left(\left(0.061 - 0.177/4 \right) / (4-1) \right)^{\frac{1}{2}}$	
	= 0.075	
3	$SCL = \overline{X} + F * S$	Compute combined Shewhart-CUSUM normal control limit.
	= 0.105 + 4.5 * 0.075	
	= 0.444	
4	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 4 * (4 -1) / 2	
	= 6	
5	S = 0.0	Sen's estimator of trend.
6	var(S) = 5.0	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99} * var(S)^{\frac{1}{2}}) / 2$	Ordinal position for one-sided lower confidence limit for slope.
	= $(6 - 2.326 * 5.0) / 2$	The LCL is the M_1 th largest slope estimate. When M_1 is not an integer, interpolation is used.
	= 0.399	
8	LCL(S) = -0.426	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits RDX (ug/L) at SP-2 Poisson Prediction Limit

<u>Step</u>	Equation	Description
1	Transform ppm to ppb if required.	
2	Substitute reporting limit (quantification limit recommended) for nondetects.	
3	Y = sum[X] = 4.0	Compute sum of concentrations and/or reporting limits.
4	alpha = min[(195 ^{1/K}) ^½ , .01] = min[(195 ^{1/20}) ^½ , .01] = 0.01	Adjusted per comparison false positive rate. Pass initial or 1 resample.
5	$PL = Y/N + Z^{2}/2N + (Z/N)(Y(1+N) + Z^{4})^{\frac{1}{2}}$ = 4.0/4 + 2.329 ² /(2*4) + (2.329/4)(4.0(1+4) + 2.329^{2}/4)^{\frac{1}{2}}	Compute Poisson prediction limit and express result in original metric (<i>e.g.</i> ppb or ppm). Z is the alpha percentage point of the normal distribution.
	= 4.369	

IRP-52 [IRP-52]

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Di(2-ethylhexyl)phthalate (ug/L) at SP-4 Poisson Prediction Limit

<u>Step</u>	Equation	Description
1	Transform ppm to ppb if required.	
2	Substitute reporting limit (quantification limit recommended) for nondetects.	
3	Y = sum[X] = 88.0	Compute sum of concentrations and/or reporting limits.
4	alpha = min[(195 ^{1/K}) ^{1⁄2} , .01] = min[(195 ^{1/20}) ^{1⁄2} , .01]	Adjusted per comparison false positive rate. Pass initial or 1 resample.
	= 0.01	
5	$PL = Y/N + Z^{2}/2N + (Z/N)(Y(1+N) + Z^{4})^{\frac{1}{2}}$ = 88.0/4 + 2.329^{2}/(2*4) + (2.329/4)(88.0(1+4) + 2.329^{4})^{\frac{1}{2}}	Compute Poisson prediction limit and express result in original metric (<i>e.g.</i> ppb or ppm). Z is the alpha percentage point of the normal distribution.
	= 34.912	

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Lead (ug/L) at SP-4 Poisson Prediction Limit

<u>Step</u>	Equation	Description
1	Transform ppm to ppb if required.	
2	Substitute reporting limit (quantification limit recommended) for nondetects.	
3	Y = sum[X] = 12.0	Compute sum of concentrations and/or reporting limits.
4	alpha = min[(195 ^{1/K}) ^½ , .01] = min[(195 ^{1/20}) ^½ , .01]	Adjusted per comparison false positive rate. Pass initial or 1 resample.
	= 0.01	
5	PL = $Y/N + Z^{2}/2N + Z^{2}/(2N) + Z^{2}/(2N) + Z^{2}/(2^{*}4) + Z^{2}/(2^{*}4) + (2.329/4) + (2.329/4) + 2.329^{2}/(2^{*}4) + Z^{2}/(2^{*}4) + Z^{2}/(2^{*}4$	Compute Poisson prediction limit and express result in original metric (<i>e.g.</i> ppb or ppm). Z is the alpha percentage point of the normal distribution.
	= 8.24	

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Mercury (ug/L) at SP-4 Normal Control Limit

<u>Step</u>	Equation	Description
1	$\overline{X} = sum[X] / N$	Compute background mean.
	= 0.374 / 4	
	= 0.093	
2	S = $((sum[X^2] - sum[X]^2/N)/(N-1))$	Compute background sd.
	$= ((0.043 - 0.14/4) / (4-1))^{\frac{1}{2}}$	
	= 0.052	
3	$SCL = \overline{X} + F * S$	Compute combined Shewhart-CUSUM normal control limit.
	= 0.093 + 4.5 * 0.052	
	= 0.326	
4	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 4 * (4 -1) / 2	
	= 6	
5	S = 0.0	Sen's estimator of trend.
6	var(S) = 5.0	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99} * var(S)^{\frac{1}{2}}) / 2$	Ordinal position for one-sided lower confidence limit for slope.
	= $(6 - 2.326 * 5.0)^{1/2}$ / 2	The LCL is the M_1 th largest slope estimate. When M_1 is not an integer, interpolation is used.
	= 0.399	
8	LCL(S) = -0.293	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits RDX (ug/L) at SP-4 Poisson Prediction Limit

<u>Step</u>	Equation	Description
1	Transform ppm to ppb if required.	
2	Substitute reporting limit (quantification limit recommended) for nondetects.	
3	Y = sum[X] = 4.0	Compute sum of concentrations and/or reporting limits.
4	alpha = min[(195 ^{1/K}) ^{1/} 2, .01] = min[(195 ^{1/20}) ^{1/} 2, .01] = 0.01	Adjusted per comparison false positive rate. Pass initial or 1 resample.
5	$PL = Y/N + Z^{2}/2N + (Z/N)(Y(1+N) + Z^{4})^{\frac{1}{2}}$ = 4.0/4 + 2.329 ² /(2*4) + (2.329/4)(4.0(1+4) + 2.329^{2}/4)^{\frac{1}{2}}	Compute Poisson prediction limit and express result in original metric (<i>e.g.</i> ppb or ppm). Z is the alpha percentage point of the normal distribution.
	= 4.369	

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Di(2-ethylhexyl)phthalate (ug/L) at SP-5 Poisson Prediction Limit

<u>Step</u>	Equation	Description
1	Transform ppm to ppb if required.	
2	Substitute reporting limit (quantification limit reco	ommended) for nondetects.
3	Y = sum[X] = 84.0	Compute sum of concentrations and/or reporting limits.
4	alpha = min[(195 ^{1/K}) ^½ , .01] = min[(195 ^{1/20}) ^½ , .01] = 0.01	Adjusted per comparison false positive rate. Pass initial or 1 resample.
5	PL = $Y/N + Z^{2}/2N + (Z/N)(Y(1+N) + Z^{4})^{\frac{1}{2}}$ = $84.0/4 + 2.329^{2}/(2*4) + (2.329/4)(84.0(1+4) + 2.329^{4})^{\frac{1}{2}}$	Compute Poisson prediction limit and express result in original metric (e.g. ppb or ppm). Z is the alpha percentage point of the normal distribution.
	= 33.632	

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Lead (ug/L) at SP-5 Poisson Prediction Limit

<u>Step</u>	Equation	Description
1	Transform ppm to ppb if required.	
2	Substitute reporting limit (quantification limit reco	ommended) for nondetects.
3	Y = sum[X] = 12.0	Compute sum of concentrations and/or reporting limits.
4	alpha = min[$(195^{1/\mathbf{K}})^{\frac{1}{2}}$, .01] = min[$(195^{1/20})^{\frac{1}{2}}$, .01]	Adjusted per comparison false positive rate. Pass initial or 1 resample.
5	= 0.01 $PL = Y/N + Z^{2}/2N + Z^{2}/(2N) +$	Compute Poisson prediction limit and express result in original metric (<i>e.g.</i> ppb or ppm). Z is the alpha percentage point of the normal distribution.
	= 8.24	

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Mercury (ug/L) at SP-5 Normal Control Limit

<u>Step</u>	Equation	Description
1	$\overline{X} = sum[X] / N$	Compute background mean.
	= 0.35 / 4	
	= 0.087	
2	$S = ((sum[X]^{2} - sum[X]^{1/2}))$	Compute background sd.
	$= \left(\left(0.035 - 0.122/4 \right) / (4-1) \right)^{\frac{1}{2}}$	
	= 0.04	
3	$SCL = \overline{X} + F * S$	Compute combined Shewhart-CUSUM normal control limit.
	= 0.087 + 4.5 * 0.04	
	= 0.266	
4	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 4 * (4 -1) / 2	
	= 6	
5	S = 0.0	Sen's estimator of trend.
6	var(S) = 5.0	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99} * var(S)^{\frac{1}{2}}) / 2$	Ordinal position for one-sided lower confidence limit for slope.
	= (6 - 2.326 * 5.0 $)/2$	The LCL is the M_1 th largest slope estimate. When M_1 is not an integer, interpolation is used.
	= 0.399	
8	LCL(S) = -0.225	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits RDX (ug/L) at SP-5 Poisson Prediction Limit

<u>Step</u>	Equation	Description
1	Transform ppm to ppb if required.	
2	Substitute reporting limit (quantification limit reco	ommended) for nondetects.
3	Y = sum[X] = 4.0	Compute sum of concentrations and/or reporting limits.
4	alpha = min[(195 ^{1/K}) ^{1/2} , .01] = min[(195 ^{1/20}) ^{1/2} , .01] = 0.01	Adjusted per comparison false positive rate. Pass initial or 1 resample.
5	$PL = Y/N + Z^{2}/2N + (Z/N)(Y(1+N) + Z^{4})^{1/2}$ = 4.0/4 + 2.329 ² /(2*4) + (2.329/4)(4.0(1+4) + 2.329^{2}/4)^{1/2}	Compute Poisson prediction limit and express result in original metric (<i>e.g.</i> ppb or ppm). Z is the alpha percentage point of the normal distribution.
	= 4.369	

Upgradient Data

Constituent	Units	Well	Date		Result	Adjusted	
Di(2-ethylhexyl)phthalate	ug/L	IRP-52	06/26/2014	ND	20.0000	21.0000	**
Di(2-ethylhexyl)phthalate	ug/L	IRP-52	09/04/2014	ND	23.0000	21.0000	**
Di(2-ethylhexyl)phthalate	ug/L	IRP-52	11/19/2014	ND	22.0000	21.0000	**
Di(2-ethylhexyl)phthalate	ug/L	IRP-52	03/12/2015	ND	21.0000		
Lead	ug/L	IRP-52	06/26/2014	ND	3.0000		
Lead	ug/L	IRP-52	09/04/2014	ND	3.0000		
Lead	ug/L	IRP-52	11/19/2014	ND	3.0000		
Lead	ug/L	IRP-52	03/12/2015	ND	3.0000		
Mercury	ug/L	IRP-52	06/26/2014	ND	0.0675		
Mercury	ug/L	IRP-52	09/04/2014		0.1500		
Mercury	ug/L	IRP-52	11/19/2014		0.2970		
Mercury	ug/L	IRP-52	03/12/2015	ND	0.0675		
RDX	ug/L	IRP-52	06/26/2014	ND	1.0000		
RDX	ug/L	IRP-52	09/04/2014	ND	1.0000		
RDX	ug/L	IRP-52	11/19/2014	ND	1.0000		
RDX	ug/L	IRP-52	03/12/2015	ND	1.0000		

* Outlier for that well and constituent.
 ** - ND value replaced with median RL.
 *** - ND value replaced with manual RL.
 ND = Not detected, Result = detection limit.

Constituent	Units	Well	Date		Result	Pred. Limit
Di(2-ethylhexyl)phthalate	ug/L	SP-1	06/25/2024	ND	5.0000	33.6317
Lead	ug/L	SP-1	06/25/2024	ND	50.0000	8.2396
Mercury	ug/L	SP-1	06/25/2024	ND	0.2000	0.8655
RDX	ug/L	SP-1	06/25/2024	ND	1.2000	4.3693
Di(2-ethylhexyl)phthalate	ug/L	SP-2	06/25/2024	ND	4.9000	33.6317
Lead	ug/L	SP-2	06/25/2024	ND	50.0000	8.2396
Mercury	ug/L	SP-2	06/25/2024	ND	0.2000	0.8655
RDX	ug/L	SP-2	06/25/2024	ND	1.1000	4.3693
Di(2-ethylhexyl)phthalate	ug/L	SP-4	06/25/2024	ND	4.9000	33.6317
Lead	ug/L	SP-4	06/25/2024	ND	50.0000	8.2396
Mercury	ug/L	SP-4	06/25/2024	ND	0.2000	0.8655
RDX	ug/L	SP-4	06/25/2024	ND	1.1000	4.3693
Di(2-ethylhexyl)phthalate	ug/L	SP-5	06/25/2024	ND	4.9000	33.6317
Lead	ug/L	SP-5	06/25/2024	ND	50.0000	8.2396
Mercury	ug/L	SP-5	06/25/2024	ND	0.2000	0.8655
RDX	ug/L	SP-5	06/25/2024	ND	1.2000	4.3693

Most Current Downgradient Monitoring Data

Current value failed - awaiting verification.
 - Current value passed - previous exceedance not verified.
 - Current value failed - exceedance verified.
 - Current value passed - awaiting one more verification.
 - Insufficient background data to compute prediction limit.
 ND = Not Detected, Result = detection limit.

Constituent	Detect	Upgradient N	Proportion	Detect	Downgradient N	Proportion
Di(2-ethylhexyl)phthalate	0	4	0.000	0	92	0.000
Lead	0	4	0.000	0	92	0.000
Mercury	2	4	0.500	4	92	0.043
RDX	0	4	0.000	0	94	0.000

Detection Frequencies in Upgradient and Downgradient Wells

N = Total number of measurements in all wells.Detect = Total number of detections in all wells. Proportion = Detect/N.

Shapiro-Wilk Multiple Group Test of Normality

Constituent	Detect	Ν	Detect Freq	G raw	G log	G cbrt	G sqrt	G sqr	G cub	Crit Value	Dist Form	Model Type
Di(2-ethylhexyl)phthalate	0	4	0.000	1.125	1.125					1.645	normal	poisson
Lead	0	4	0.000	1.125	1.125					1.645	normal	poisson
Mercury	2	4	0.500	0.898	0.603					1.645	normal	normal
RDX	0	4	0.000	1.125	1.125					1.645	normal	poisson

* - Distribution override for that constituent.

Fit to distribution is confirmed if $G \leq critical value$.

Model type may not match distributional form when detection frequency < 50%.

Summary Statistics and Prediction Limits

Constituent	Units	Detect	Ν	Mean	SD	alpha	Factor	Pred Limit	Туре
Di(2-ethylhexyl)phthalate	ug/L	0	4	21.0000		0.0100		33.6317	poisson
Lead	ug/L	0	4	3.0000		0.0100		8.2396	poisson
Mercury	ug/L	2	4	0.1117	0.1485	0.0100	5.0758	0.8655	normal
RDX	ug/L	0	4	1.0000		0.0100		4.3693	poisson

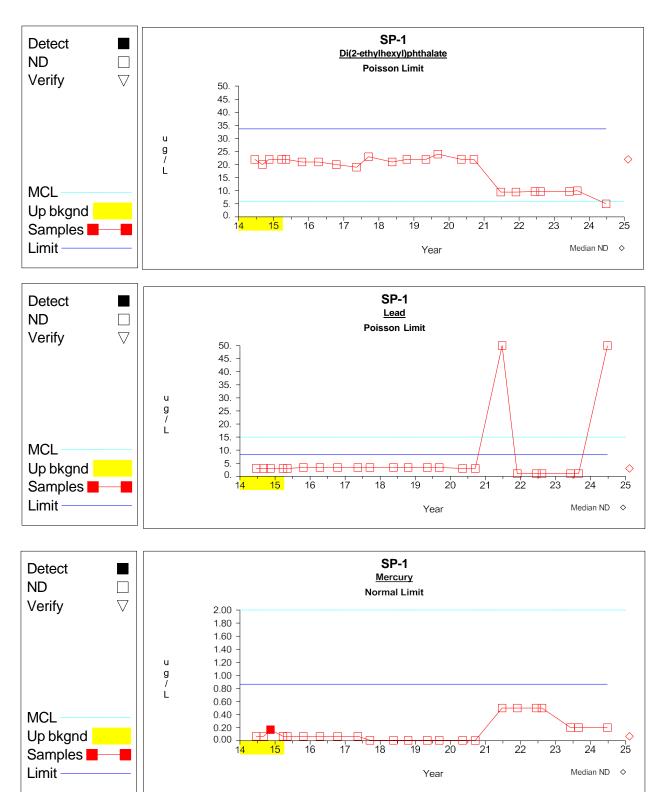
* - Insufficient Data.

*** - Calculated limit raised to Manual Reporting Limit.
 *** - Nonparametric limit based on ND value.
 For transformed data, mean and SD in transformed units and prediction limit in original units.

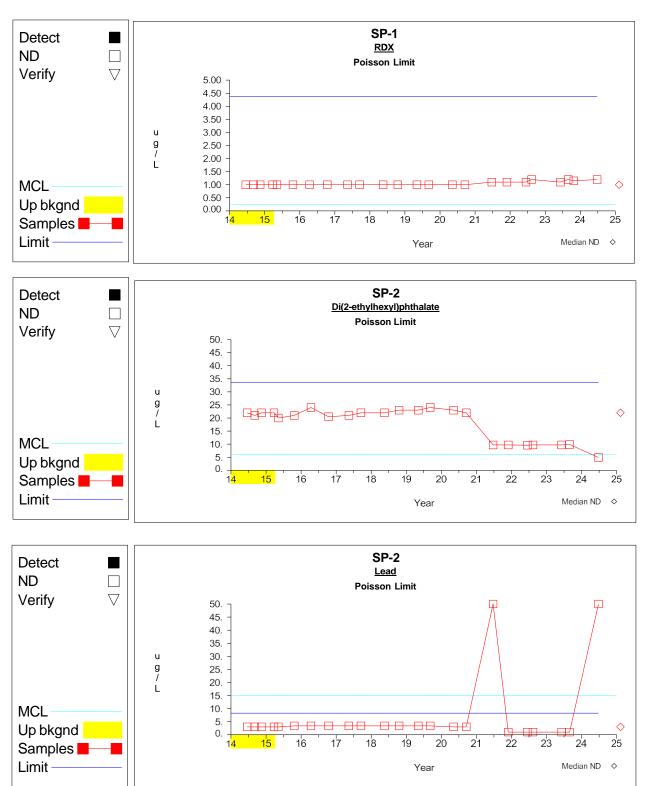
All sample sizes and statistics are based on outlier free data.

For nonparametric limits, median reporting limits are substituted for extreme reporting limit values.

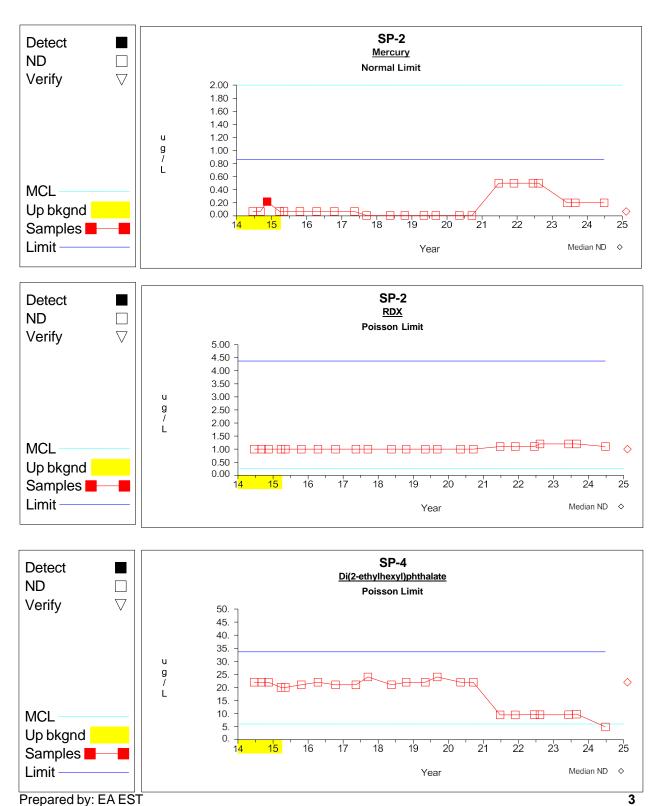
Dixon's Test Outliers 1% Significance Level

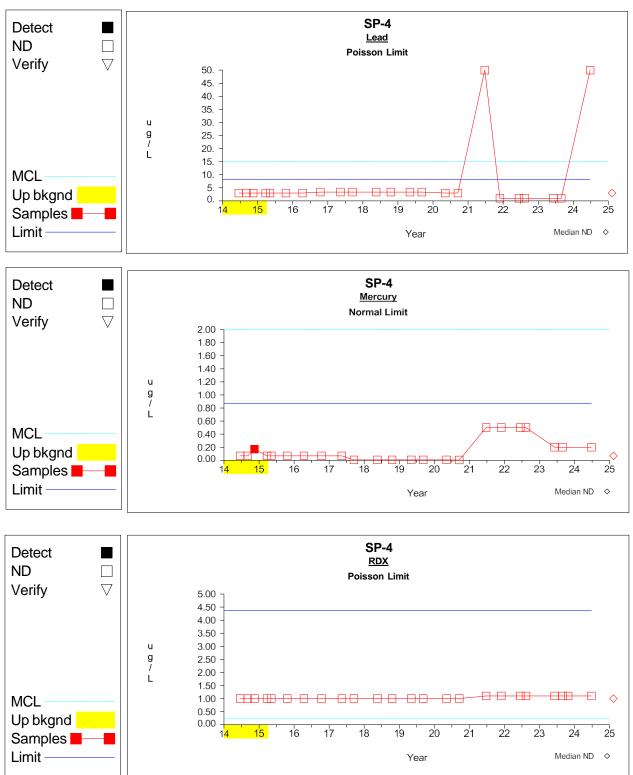

Constituent	Units	Well	Date	Result	ND Qualifier	Date Range	Ν	Critical Value
-------------	-------	------	------	--------	--------------	------------	---	----------------

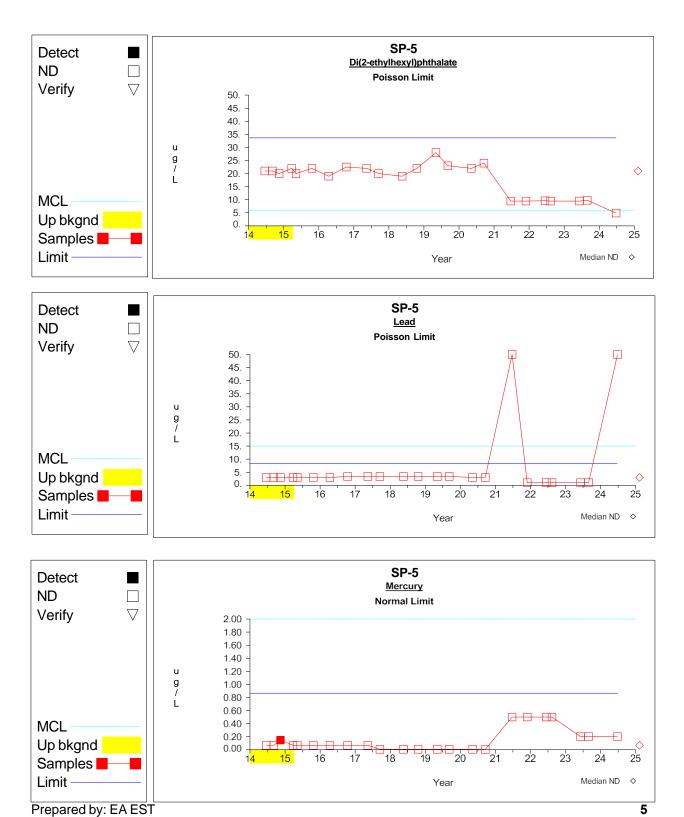
N = Total number of independent measurements in background at each well.

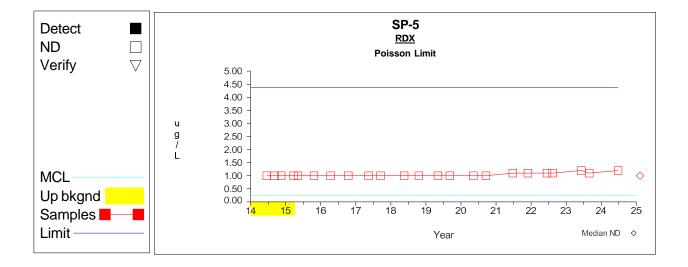

Date Range = Dates of the first and last measurements included in background at each well.

Critical Value depends on the significance level and on N-1 when the two most extreme values are tested or


N for the most extreme value.


Up vs. Down Prediction Limits


Up vs. Down Prediction Limits


Up vs. Down Prediction Limits

Up vs. Down Prediction Limits

Up vs. Down Prediction Limits

Up vs. Down Prediction Limits

Worksheet 1 - Upgradient vs. Downgradient Comparisons Di(2-ethylhexyl)phthalate (ug/L) Poisson Prediction Limit

Step	Equation	Description
1	Transform ppm to ppb if required.	
2	Substitute reporting limit (quantification limit recommended) for nondetects.
3	Y = sum[X] = 84.0	Compute sum of concentrations and/or reporting limits.
4	alpha = min[(195 ^{1/K}) ^{1/2} , .01] = min[(195 ^{1/16}) ^{1/2} , .01] = 0.01	Adjusted per comparison false positive rate. Pass initial or 1 resample.
5	$PL = Y/N + Z^{2}/2N + (Z/N)(Y(1+N) + Z^{4})^{\frac{1}{2}}$ = 84.0/4 + 2.329^{2}/(2*4) + (2.329/4)(84.0(1+4) + 2.329^{2}/4)^{\frac{1}{2}}	Compute Poisson prediction limit and express result in original metric (<i>e.g.</i> ppb or ppm). Z is the alpha percentage point of the normal distribution.
	= 33.632	

Worksheet 1 - Upgradient vs. Downgradient Comparisons Lead (ug/L) Poisson Prediction Limit

<u>Step</u>	Equation	Description
1	Transform ppm to ppb if required.	
2	Substitute reporting limit (quantification limit recommende	d) for nondetects.
3	Y = sum[X] = 12.0	Compute sum of concentrations and/or reporting limits.
4	alpha = min[(195 ^{1/K}) ^{1/2} , .01] = min[(195 ^{1/16}) ^{1/2} , .01]	Adjusted per comparison false positive rate. Pass initial or 1 resample.
	= 0.01	
5	PL = Y/N + $Z^{2}/2N$ + (Z/N)(Y(1+N) + $Z^{2}/4$) ^{1/2} = 12.0/4 + 2.329 ² /(2*4) + (2.329/4)(12.0(1+4) + 2.329 ² /4) ^{1/2}	Compute Poisson prediction limit and express result in original metric (<i>e.g.</i> ppb or ppm). Z is the alpha percentage point of the normal distribution.
	= 8.24	

Worksheet 1 - Upgradient vs. Downgradient Comparisons Mercury (ug/L) Normal Prediction Limit

<u>Step</u>	Equation	Description
1	$\overline{X_1} = sum[X_1] / N_1$ = 0.447 / 2	Compute mean of N ₁ detected measurements.
2	= 0.224 $S_{1} = ((sum[X_{1}^{2}]_{-sum[X^{1}]}^{2}/N^{1})/(N^{1}-1))^{\frac{1}{2}}$ = ((0.111-0.2/2)/(2-1))^{\frac{1}{2}} = 0.104	Compute sd of N ₁ detected measurements.
3	$\overline{X} = (1 - N_0/N) \overline{X_1}$ = (1 - 2/4) 0.224 = 0.112	Use Aitchison's method to adjust mean for presence of nondetects.
4	$S = \begin{bmatrix} (1 - N_0/N) * S_1^2 + (N - 1)/(N - 1) + S_1^2 + (N - 1)/(N - 1) \end{bmatrix}$ = $\begin{bmatrix} (1 - 2/4) * 0.104 + 2 \frac{1}{2} \\ (2/4) (1 - (2 - 1)/(4 - 1)) 0.224 \end{bmatrix}$ = 0.149	Use Aitchison's method to adjust sd for presence of nondetects.
5	alpha = min[(195 ^{1/K}) ^{1/2} , .01] = min[(195 ^{1/16}) ^{1/2} , .01] = 0.01	Adjusted per comparison false positive rate. Pass initial or 1 resample.
6	PL = \overline{X} + tS(1+1/N) ^{1/2} = 0.112 + (4.54*0.149)(1+1/4) ^{1/2} = 0.866	One-sided normal prediction limit (t is Student's t on N-1 degrees of freedom and 1-alpha confidence level).

Worksheet 1 - Upgradient vs. Downgradient Comparisons RDX (ug/L) Poisson Prediction Limit

<u>Step</u>	Equation	Description
1	Transform ppm to ppb if required.	
2	Substitute reporting limit (quantification limit recommende	d) for nondetects.
3	Y = sum[X]	Compute sum of concentrations and/or reporting limits.
	= 4.0	
4	alpha = min[(195 ^{1/K}) ^{1⁄2} , .01] = min[(195 ^{1/16}) ^{1⁄2} , .01]	Adjusted per comparison false positive rate. Pass initial or 1 resample.
	= 0.01	
5	$PL = Y/N + Z^{2}/2N + Z^{2}/2N + Z^{2}/4 Z^{2}/2 + Z^{2}/4 Z^{2}/2 + Z^{2}$	Compute Poisson prediction limit and express result in original metric (<i>e.g.</i> ppb or ppm). Z is the alpha percentage point of the normal distribution.
	= 4.369	